İki boyutlu uzay

İki boyutlu uzay ya da kısaca 2D, içinde yaşadığımız evrenin düzlemsel yansımasının geometrik modelidir. 2 boyutlu olan (ya da görünen) varlıklar sadece genişlik ve yükseklikten oluşan düzlemsel bir yüzeye sahiptirler ve derinlikleri yoktur.

Tanımlar

"n" sayılar dizisi "n" boyutlu uzayda bir konum olarak tanımlanır."n=2" olduğunda bu tür konumlanmalar 2 boyutlu öklid uzayındadır.

İki boyutlu geometri

Politoplar

2. boyutta, sınırsız sayıda politop vardır; poligonlar. İlk yirmi aşağıda gösterilmiştir.

Dışbükey

"P" düzenli poligonu temsil eder

İsim Üçgen Kare Beşgen Altıgen Yedigen Sekizgen
Sayı {3} {4} {5} {6} {7} {8}
Görüntü
İsim Dokuzgen Ongen Onbirgen Onikigen Onüçgen Ondörtgen
Sayı {9} {10} {11} {12} {13} {14}
Görüntü
İsim Onbeşgen Onaltıgen Onyedigen Onsekizgen Ondokuzgen Yirmigen ...n-gen
Sayı {15} {16} {17} {18} {19} {20} {n}
Görüntü

Küre

Düzenli tek köşeli çember ve düzenli 2 köşeli çember bozulmuş düzenli poligonlar olarak düşünülebilir. Bir küre ya da halka yüzeyinde gibi öklid olmayan bir uzayda bozulmamış bir şekilde bulunabilir.

İsim Tek köşeli çember Çift köşeli çember
Sayı {1} {2}
Görüntü

İçbükey

2. boyutta sınırsız sayıda içbükey düzenli poligon vardır, {n/m} oranıyla ifade edilir. Yıldız Poligon olarak ifade edilir ve dışbükey düzenli poligonlarla aynı yatay düzlemi paylaşır. Genel olarak, herhangi bir n doğal sayısı için, there are n köşeli içbükey düzenli poligonal yıldızlar with {n/m} sembolüyle gösterilir tüm m'ler için m < n/2 (ispatı; {n/m}={n/(n-m)}) ve m ve n ortak asaldır.

İsim Beş köşeli yıldız Yedi köşeli yıldız Sekiz köşeli yıldız Dokuz köşeli yıldız On köşeli yıldız ..."n" köşeli yıldız
Sayı {5/2} {7/2} {7/3} {8/3} {9/2} {9/4} {10/3} {n/m}
Görüntü  

Tamküre

Tamküre 2 boyutlu uzayda dairedir, bu yüzden bazen daire olarak ifade edilir çünkü yüzeyi tek boyutludur. Yüzölçümü;

yarıçaptır.

İki boyutlu uzayda koordinat sistemi

Çok bilinen koordinat sistemleri Kartezyen koordinat sistemi, Polar koordinat sistemi ve Coğrafi koordinat sistemi.

This article is issued from Vikipedi - version of the 5/31/2015. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.