Varyans hesaplanması için algoritmalar

İstatistiksel ölçülerinin bilgisayar ile yapılan hesaplanmalarında varyans hesaplanması için kullanılan algoritmalar pratik sonuçlar elde edilmesinde önemli rol oynamaktadırlar. Varyansın hesaplanması için işe yarar bilgisayar algoritmalarının tasarlanmasında ana sorun varyans formüllerinin veri kare toplamlarının hesaplanmasını gerektirmesindedir. Bu işlem yapılırken sayısal kararsızlık problemleri ve özellikle büyük veri değerleri bulunuyorsa aritmetik taşmalar problemleri ortaya çıkması çok muhtemeldir.

Ancak, 2014 yılında yayınlanan "İstatistikte Altın Oran" adlı bir kitapta, kareler ortalamasının karekökü operatörü yerine, üstel bir işlem içermeyen, sadece dört işlem ve sınırlı toplama operatörü ile hesaplanabilen bir sapma metodolojisi tanımlanmıştır. Tanımlanan bu sapma'nın en dikkat çekici özelliği, ortalama'nın sağı ve solu için, birbirinden bağımsız iki ayrı sapma üretmesidir[1].

I. Naif algoritma

Tüm bir anakütle veri dizisi için varyansın hesaplanması için formül şudur:

Bir sonsuz olmayan n gözlem hacminde bir örneklem veri dizisi kullanarak anakütle varyansının bir yansız kestirim değerini bulmak için formül şöyle ifade edilir:

Bu formüller kullanılarak varyans kestirimi hesaplamak için bir naif algoritma için szde kod şöyle verilir:

n = 0
toplam = 0
toplam_kare = 0

for veri olan her x:
  n = n + 1
  toplam = toplam + x
  toplam_kare = toplam_kare + x*x
end for

ortalama = toplam/n
varyans = (toplam_kare - toplam*ortalama)/(n - 1)

Bu algoritma bir sonlu anakutle verileri icin varyansin hesaplanmasina hemen adapte edilebilir: en son satirda ki n - 1 ile bolum yapilacagina n ile bolum yapilir.

toplam_kare ve toplam * ortalama bibirine hemen yakin sayilar olabilir. Bu nedenle sonucun kesinligi hesaplamada kullanilan kayan noktali aritmetigin dogal kesinligindan daha az olabilir. Eger varyans değeri elde edilen veri toplamina karsit olarak daha kucuk ise, bu sorun daha da siddetle ortaya cikar.

II. İki-geçişli algoritma

Varyans için değişik bir formül kullanan diğer bir yaklaşım şu sözde kod ile verilmiştir:

n = 0
toplam1 = 0
for veri olan her x:
  n = n + 1
  toplam1 = toplam1 + x
end for
ortalama = toplam1/n

toplam2 = 0
for veri olan her x:
  toplam2 = toplam2 + (x - ortalama)^2
end for
varyans = toplam2/(n - 1)

IIa. Düzeltilmiş toplam şekli

Yukarıda verilen algortımanın düzeltilmiş toplam şekli şöyle verilir:

n = 0
toplam1 = 0
for veri olan her x:
  n = n + 1
  toplam1 = toplam1 + x
end for
ortalama = toplam1/n

toplam2 = 0
toplamc = 0
for veri olan her x:
  toplam2 = toplam2 + (x - ortalama)^2
  toplamc = toplamc + (x - ortalama)
end for
varyans = (toplam2 - toplamc^2/n)/(n - 1)

III. On-line algoritması

Gereken yenileştirme için bulunabilecek daha uygun bir işlemin (cari) ortalamadan farkların karelerinin toplamını bulmak olduğu anlaşılmıştır; bu değer olup burada olarak gösterilmektedir:

Sayısal olarak daha kararlı bir algoritma aşağıda verilmiştir. Bu algoritma ortalama hesaplamak için kullanılmak niyetiyle Knuth (1998) tarafından verilmiş [2] ve orada ilk defa Welford(1962) tarafından ortaya atıldığı bildirilmiştir.[3]

n = 0
ortalama = 0
M2 = 0

for veri olan her x:
  n = n + 1
  delta = x - ortalama
  ortalama = ortalama + delta/n
  M2 = M2 + delta*(x - ortalama)   // Bu terim ortalama icin yeni değeri kullanır
end for

varyans_n = M2/n
varyans = M2/(n - 1)


IV. Ağırlıklı küçük artışlı algoritma

Eğer gözlemler için değişik ağırlıklar verilmişse, West (1979) şu küçük artışlı algoritmanın kullanılabileceğini bildirmiştir:[4]

n = 0
for veri olan her x:
  if n=0 then 
      n = 1
      ortalama = x
      S = 0
      toplamagırlık = agırlık
  else
      n = n + 1
      temp = agırlık + toplamagırlık
      S = S + sumweight*agırlık*(x-ortalama)^2 / temp
      ortalama = ortalama + (x-ortalama)*agırlık / temp
      toplamagırlık = temp
  end if
end for
Varyans = S * n / ((n-1)*toplamagırlık)  // eğer veri dizisi anakütle içinse n/(n-1) kullanılmaz.

V. Paralel algoritma

Chan, Golub ve LeVeque (1979) hazırladıkları bir raporda yukarıda verilen III. On-line Algoritmasının bir örneklem olan i herhangi iki tane ve setlerine ayırmak için işleme konabilen bir algoritmanın özel bir hali olduğunu bildirmişlerdir:

.

Bu bazı hallerde daha kullanışlı olabilmektedir. Örneğin girdinin ayrılabilir parçalarına çoklu kompüter işlem birimlerinin kullanılması imkânini sağlayabilir.

V.a. Üst seviyede istatistikler

Örneklem verileri için üst seviyede istatistikler olan çarpıklık ve basıklık ölçülerini bulmak icin Terriberry Chen'in üçüncü ve dördüncü merkezsel moment bulmak için ortaya attığı formülü daha uygun bir şekile şöyle değiştirmiştir.:[5]

Burada yine, verilerin ortalamadan farklarının üstel değerlerinin toplamlarıdır; yani olur. Bu değerler kullanılarak çarpıklık ve basıklık ölçüleri şöyle bulunur:

 : çarpıklık,
 : basıklık.

Küçük artışlı hallerde (yani ), bu şöyle basitleştirilebilir:

Burada dikkati çeken nokta, değerini korumak suretiyle, sadece tek bir bölme işleminin gerekli olmasi ve böylece çok az bir ekstra maliyetle daha yüksek istatistiksel ölçüler hesaplanabilmesidir.

Örnek

Kullanılan kompüterde bütün "floating" nokta operasyonlarının IEEE 754 çifte-hassiyetli aritmetik ile yapıldığı varsayılsın. Sonsuz büyüklükte bir anakütleden n=5 büyüklüğünde bir örneklem olarak

4, 7, 13, 16

veri seti elde edildiğini düşünelim. Bu örneklem için örneklem ortalaması 10 olur ve yanlı olmayan anakütle varyans kestirimi 30dur. Hem "I. naif Algoritma" hem de "II. iki geçisli Algoritma" bu değerleri doğru olarak hesaplamaktadirlar.

Şimdi örnekleme olarak şu veri setini alalım:

, , ,

Bu örneklemin de, birinci orneklem gibi ayni varyans kestirimine sahip olması gerekir. "II. Algoritma" bu varyansı doğru olarak hesaplamaktadır. Fakat "I. Algoritma" sonuç olarak tam 30 yerine 29.333333333333332 sonucu verir. Bu dakiklik kaybının belki kabul edilebilir tolerans olduğu ve "I. Algoritma" kullanılmasının nispeten önemsiz bir hata doğurduğu söylenebilir.

Fakat bu "I. Algoritma" hesaplamasında çok önemli bir eksiklik ve hataya işaret etmektedir. Bu sefer örneklem olarak şunu alalım:

, , ,

Yine "II. Algoritma" doğru anakütle varyans kestirimi oalarak 30 gösterir. Ama "I. Algoritma" kullanılınca elde edilen kestirim hesabı -170.66666666666666 olarak verilir. Bu çok önemli ve yapılmaması gereken bir hatadır; çünkü kavram olarak tanımlamayla varyans değerinin hiçbir zaman negatif olmaması gerekir.

Ayrıca bakınız

Kaynakça

  1. Mehmet Güven GÜNVER, Prof. Dr. Mustafa Şükrü ŞENOCAK, Doç Dr. Suphi VEHİD, İstatistikte Altın Oran, Türkmen Kitabevi, 2014, ISBN : 9786054749409
  2. Knuth,D.E. (1998). The Art of Computer Programming, V.2: Seminumerical Algorithms, 3üncü ed., p. 232. Boston: Addison-Wesley.
  3. Welford,B.P. (1962). "Note on a method for calculating corrected sums of squares and products". Technometrics C.4 No.3 say.419–420.
  4. D. H. D. West (1979). Communications of the ACM, 22, 9, 532-535: Updating Mean and Variance Estimates: An Improved Method
  5. Terriberry,T.B. (2007), Computing Higher-Order Moments Online url=http://people.xiph.org/~tterribe/notes/homs.html

Dış bağlantılar

This article is issued from Vikipedi - version of the 10/20/2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.