Carl Friedrich Gauss
Carl Friedrich Gauß | |
---|---|
Christian Albrecht Jensen tarafından yapılmış portresi | |
Doğum |
30 Nisan 1777 Braunschweig, Almanya |
Ölüm |
23 Şubat 1855 (77 yaşında) Göttingen, Almanya |
Milliyeti | Alman |
Dalı | Matematik, fizik |
Çalıştığı yerler | Göttingen Üniversitesi |
Öğrenim | Helmstedt Üniversitesi |
Doktora hocası | Johann Friedrich Pfaff |
Doktora öğrencileri |
Friedrich Bessel Richard Dedekind Bernhard Riemann |
Önemli başarıları |
Sayılar kuramı Manyetizma |
İmza |
Carl Friedrich Gauss ya da Gauß (30 Nisan 1777 – 23 Şubat 1855), Alman matematikçi ve bilim insanı. Katkıda bulunduğu alanlardan bazıları; sayılar kuramı, analiz, diferansiyel geometri, jeodezi, elektrik, manyetizma, astronomi ve optiktir. "Matematikçilerin prensi" ve "antik çağlardan beri yaşamış en büyük matematikçi" olarak da anılan Gauss,[1] matematiğin ve bilimin pek çok alanına etkisini bırakmıştır ve tarihin en nüfuzlu matematikçilerinden biri olarak kabul edilir.
Gauss'un çocukluk yıllarından beri dahi olduğunu gösteren pek çok hikâye vardır, nitekim pek çok matematiksel keşfini henüz 20 yaşına gelmeden yapmıştır. Sayılar kuramının önemli sonuçlarını derleyip kendi katkılarını da ekleyerek yazdığı büyük eseri Disquisitiones Arithmeticae'yi 21 yaşında (1798) bitirmişse de, eser ilk olarak 1801'de basılmıştır.
Hayatı
Çocukluğu ve gençliği
Gauss, Kutsal Roma Cermen İmparatorluğu'na bağlı olan Braunschweig-Lüneburg Dükalığı'ndaki Braunschweig kentinde, Gebhard Dietrich ve Dorothea Gauss çiftinin tek çocuğu olarak dünyaya geldi. Babası az eğitimli bir taş ve duvar ustasıydı, annesinin ise okuma-yazması bile yoktu. Efsaneye göre, Gauss henüz üç yaşındayken, babasının kâğıt üzerinde yaptığı hesapları kafasından kontrol edip düzelterek dehasını belli etti.[2]
Bir başka meşhur hikâyeye göre, Gauss'un ilkokul öğretmeni J.G. Büttner, öğrencilerini oyalamak için 1'den 100'e kadar olan sayıları toplamalarını isteyince, Gauss cevabı birkaç saniye içinde bularak hem öğretmenini, hem de asistanı Martin Bertels'i hayrete düşürdü. Küçük Gauss, sayı listesinin iki zıt ucundan birer sayı alıp topladığında hep aynı sonucun çıktığını farketmişti: (1 + 100) = (2 + 99) = (3 + 98) = ... = (51 + 50) = 101, vs. Böylece 1'den 100'e kadar olan sayıların toplamı 50 × 101 = 5050 oluyordu.[3]
Gauss, Braunschweig Dükü Karl Wilhelm Ferdinand'in verdiği burs sayesinde 1792-1795 arasında Collegium Carolinum'da (bugünkü adıyla Braunschweig Teknik Üniversitesi), 1795-1798 arasında da Göttingen Üniversitesi'nde öğrenim gördü. 1796'da kenar sayısı bir Fermat asalı olan her düzgün çokgenin, sadece cetvel ve pergel kullanılarak çizilebileceğini kanıtladı. Bu tür cetvel ve pergel problemleri Antik Yunan'dan beri matematikçileri meşgul etmekteydi, dolayısıyla da Gauss'un keşfinin önemi büyüktü. Gauss bu başarısından o kadar memnun oldu ki, mezar taşına bir düzgün onyedigenin oyulmasını vasiyet etti. Ne var ki, daireye çok yakın olan bu şeklin oyulması çok zor olacağından, vasiyetini yerine getirecek bir taş ustası bulamadı.
1796 Gauss için oldukça verimli bir yıl oldu. Düzgün çokgenlerle ilgili keşfinden bir ay kadar sonra, yine kendi keşfi olan modüler aritmetik fikrini kullanarak, sayılar kuramında "karesel karşılıklılık ilkesi" (Alm. quadratisches Reziprozitätsgesetz) olarak bilinen çok önemli teoremi kanıtladı. İlk olarak Euler ve Legendre tarafından ortaya atılmış ama kanıtlanamamış olan bu teorem, ikinci dereceden denklemlerin çözülebilirliğinin belirlenmesini sağlıyordu. Yine aynı yıl içinde Gauss, asal sayıların tamsayılar arasındaki dağılımına ilişkin önemli bir sonuç buldu. Bundan kısa bir süre sonra da, her tamsayının en fazla üç üçgensel sayının toplamı olarak yazılabileceğini kanıtladı, ve 10 Temmuz 1796'da günlüğüne şu notu düştü: "Eureka! Num = ." Ekim 1796'da ise katsayıları sonlu bir cisimden gelen polinomların çözümleriyle ilgili bir sonuç yayımladı. (Bu sonuç, 150 yıl sonraki Weil varsayımlarının da çıkış noktası olmuştur.)
Orta yaşları
Gauss, 1799'da bitirdiği doktora tezinde cebirin temel teoreminin bir kanıtını sundu. Bu çok önemli teorem, karmaşık sayılar üzerine tanımlanmış her polinomun en az bir kökü olduğunu söyler. Gauss'tan önce pek çok matematikçi bu teoremi kanıtlamayı denemiş, ama hiçbir kanıt genel kabul görmemişti. Gauss'un kanıtına da, o zamanlar henüz kanıtlanmamış olan Jordan eğri teoremini kullandığı için itiraz edildi. Bu itirazlar üzerine Gauss, hayatı boyunca üç değişik kanıt daha sunacak, 1849'daki son kanıtı tüm matematikçilerden kabul görecekti. Gauss bu kanıtlar üzerinde çalışırken, karmaşık sayılar kavramının olgunlaşmasına çok büyük katkıda bulundu.
1801'de yayımladığı Disquisitiones Arithmeticae, sayılar kuramına modüler aritmetik gibi birçok yenilik getirdi. Aynı yıl içinde, İtalyan astronom Giuseppe Piazzi, Ceres asteroidini keşfetti, ama asteroidi ancak 40 gün kadar takip edebildikten sonra kaybetti. 24 yaşındaki Gauss, üç aylık bir çalışmadan sonra, Ceres'in tekrar görülebileceği pozisyonu hesapladı, ve 31 Aralık'ta iki ayrı astronom (Franz Xaver von Zach ve Heinrich Olbers), Ceres'i tam Gauss'un söylediği pozisyonda gözlemlediler. Zach, "Doktor Gauss'un zeki çalışması ve hesapları olmasaydı, Ceres'i tekrar bulamayabilirdik" diyerek Gauss'un katkısına teşekkür etti. O zamana kadar hala Dük'ün verdiği bursla geçinen ve bu durumdan memnun olmayan Gauss, astronomide kariyer yapmayı düşündü, ve 1807'de Göttingen Üniversitesi'nde astronomi profesörü ve gözlemevi müdürü olarak çalışmaya başladı. Hayatının sonuna kadar aynı üniversitede çalışacaktı.
Ceres'in keşfi sayesinde gezegen ve asteroidlerin Güneş çevresindeki hareketleriyle ilgilenmeye başlayan Gauss, 1809'da Theoria motus corporum coelestium in sectionibus conicis solem ambientum (Güneş çevresinde konik kesitler üzerinde hareket eden gök cisimlerinin hareketlerinin teorisi) adlı eserini yayımladı. Bu eser, günümüz bilimlerinde yaygın olarak kullanılan en küçük kareler yöntemini de ayrıntılı olarak ele alıyordu. (Aynı yöntem, 1805'te Fransız matematikçi Adrien-Marie Legendre ve 1808'de Amerikalı matematikçi Robert Adrain tarafından da tanımlanmış ve kullanılmıştı, fakat Gauss bu yöntemi 1795'den beri bildiğini iddia etti.[4])
Gauss en karmaşık hesapları aklından yapabilmesiyle de ünlenmişti. Anlatılana göre, Ceres'in izleyeceği yörüngeyi nasıl bu kadar hatasız hesaplayabildiği sorulunca, "logaritma kullandım" cevabını vermiş, logaritma cetvelini nasıl bu kadar hızlı kullanabildiği sorulunca da "cetvele ne gerek var, hepsini kafamda hesaplıyorum!" demiştir.
1818'de Hannover eyaleti için yüzey ölçümleri yapan Gauss, bu ölçümler için helyotropu (güneş ışığı ve aynalar yardımıyla doğrultu gözlemleri yapmaya yarayan aygıt) icat edip kullandı.
Gauss, Öklit dışı geometrilerin varlığını keşfettiğini, ama tepkilerden çekindiği için fikirlerini yayımlamadığını iddia etmiştir. Öklit dışı geometriler, Öklit aksiyomlarının bir kısmını atarak oluşturulan, sezgilerimizle çelişen fakat kendi içinde tutarlı geometrilerdir ve Einstein'ın genel görelilik kuramı gibi pek çok yeni fikrin doğumunu mümkün kılmışlardır. Gauss'un yakın arkadaşı Farkas Bolyai'nin oğlu János Bolyai, 1832'de Öklit dışı geometrilerle ilgili eserini yayımladığında, Gauss Farkas Bolyai'ye bir mektup yazdı ve "eseri övmek kendimi övmek gibi olur, çünkü eserin içeriği son 30-35 yıldır benim kafamda dolaşan fikirlerle neredeyse birebir örtüşüyor" dedi. Bu kanıtsız iddia, János Bolyai ve Gauss'un arasının açılmasına sebep oldu. (Gauss'un notları ve mektuplarından anlaşıldığı kadarıyla, Öklit dışı geometrilerle ilgili temel fikirleri János Bolyai'den önce keşfettiği doğrudur.[5])
Gauss, Hannover'de yaptığı yüzey ölçümleri sırasında, ölçüm hatalarının istatistiksel dağılımını veren (ve daha önce astronomi araştırmalarında da kullandığı) normal dağılım fikrini kafasında iyice belirginleştirdi. (Bugün normal dağılıma Gauss dağılımı da denmektedir.) Ayrıca bu ölçümler Gauss'un diferansiyel geometriye de (eğriler ve yüzeylerle ilgilenen bir matematik dalı) ilgi duymasını sağladı. 1828'de bu matematik dalının önemli teoremlerinden biri olan theorema egregium'u kanıtladı.
Yaşlılığı ve ölümü
1831 yılında Gauss, fizik profesörü Wilhelm Weber'le beraber çalışmaya başladı. Bu beraberlik, manyetizma ve elektrik konularına pek çok yenilik getirecekti (kütle, uzunluk ve zamana bağlı yeni bir manyetizma birimi gibi). 1833'te Gauss ve Weber ilk elektromanyetik telgrafı icat ettiler, ve bu telgrafla gözlemevini fizik enstitüsüne bağladılar. Gauss, hala müdürü olduğu gözlemevinin bahçesine bir manyetik gözlemevi kurulması talimatını verdi, ve Weber'le beraber Dünya'nın çeşitli yerlerindeki manyetik alanı ölçmek amacıyla bir "manyetik kulüp" (Alm. magnetischer Verein) kurdu. Gauss'un bu sıralarda geliştirdiği, manyetik alanın yatay yoğunluğunu ölçmeye yarayan metod, 20. yüzyıl ortalarına kadar kullanılmaya devam etti. Gauss ayrıca, Dünya'nin manyetik alanının iç (çekirdek) ve dış (manyetosfer) kaynaklarını ayırmak için gereken matematiksel teoriyi de geliştirdi. Hayatının sonlarına doğru matematiksel yeteneklerinin köreldiğini hissedince edebiyatla ilgilenmeye başladı.
Gauss 23 Şubat 1855'te, 78 yaşındayken, yıllardır yaşadığı Göttingen'de hayata gözlerini yumdu ve bu şehirdeki Albanifriedhof 'a gömüldü. Cenazesinde damadı Heinrich Ewald ve yakın arkadaşı (aynı zamanda biyografisinin yazarı) Wolfgang Sartorius von Waltershausen birer konuşma yaptılar. Beyni araştırma için muhafaza edildi, ve bugün hala Göttingen Üniversitesi'nin tıp fakültesinde formalin içinde korunmaktadır.
Aile hayatı
Gauss ilk evliliğini 1805 yılında Johanna Osthoff ile yaptı. Bu evlilikten Joseph (1806-1873) adında bir oğlu ve Wilhelmine (1808-1846) adında bir kızı oldu. 1809'da, Louis adını verdikleri üçüncü çocuğun doğumu sırasında Johanna hayatını kaybetti, Louis de henüz bir yaşına gelmeden annesini takip etti. Gauss, bu ölümlerden dolayı girdiği depresyondan asla tam anlamıyla kurtulamadı. Louis'in ölümünden kısa süre sonra, 1810'da karısının arkadaşı Minna Waldeck ile evlendi. Bu evlilikten de üç çocuğu oldu: Eugen (1811-1896), Wilhelm (1813-1879) ve Therese (1816-1864). Minna 1831'de hastalıktan ölünce Gauss'a ölümüne kadar kızı Therese baktı. Eugen ve Wilhelm ABD'nin Missouri eyaletine yerleştiler.
Kişiliği
Gauss tam bir mükemmeliyetçi ve bir işkolikti. Bir hikâyeye göre, bir problem üzerinde çalışırken karısının ölmek üzere olduğu haberini alınca "biraz beklesin, bitirmek üzereyim" demişti.[6] Kafasındaki fikirler tam olgunluğa erişmeden onları yayımlamak istemezdi. Bu konudaki ilkesini pauca sed matura (az ama olgun) sözüyle özetliyordu. Ölümünden sonra incelenen günlükleri ortaya çıkardı ki, meslekdaşları tarafından yayımlanmış olan pek çok önemli matematiksel keşfi o daha önceden yapmış, ama yayımlamamayı tercih etmişti. Matematik tarihçisi Eric Temple Bell'e göre, Gauss günlüklerine yazdığı tüm matematiksel fikirleri hayattayken yayımlamış olsaydı matematik 50 yıl ileri atlamış olurdu.[7]
Gauss, kendisini örnek alan genç matematikçileri desteklemediği için çok eleştirildi. Pek çok meslekdaşı onu mesafeli ve katı buluyordu. Gauss öğretmenlikten nefret ettiğini söylese de Richard Dedekind, Bernhard Riemann, Friedrich Bessel gibi bazı öğrencileri sonradan başarılı ve üretken matematikçiler oldular.
Gauss'un babasıyla arası iyi değildi. Babası Gauss'un matematik ve bilim okumasını istemiyor, kendisi gibi taş ustası olmasını istiyordu. Gauss, eğitimi boyunca babasından görmediği desteği annesinden gördü. Oğullarıyla da iyi geçinemeyen Gauss, Eugen'in ve daha sonra Wilhelm'in ABD'ye göç etmesine sebep oldu.
Gauss, yazdığı zeki kanıtları nasıl akıl ettiğini asla açıklamazdı. Kanıtı bir kere bulduktan sonra sanki vahiyle gelmiş gibi yazar, sonuca nasıl ulaştığı konusunda özellikle ipucu vermezdi.
Gauss, kişiselleştirilmiş bir Tanrı'ya inanmıyordu. Bu sebeple deist olduğu söylenebilir. Ayrıca bir monarşi destekçisiydi ve tüm Almanya'yı etkisi altına alan 1848 devrimlerini onaylamıyordu.
Anma
Gauss'un ismi matematik ve fizikte onlarca teorem, formül ve kavrama verilmiştir. Cgs sistemindeki manyetik alan birimi 1 Gauss'tur.
1989-2001 yılları arasında Gauss'un resmi, bir normal dağılım eğrisiyle beraber, 10 DM banknotlarının üzerine basılmıştır.
1977'de, Gauss'un 200. doğum günü şerefine, Doğu Almanya ve Batı Almanya'da ayrı ayrı hatıra pulları basılmıştır.
Ay'daki Gauss krateri[8], "1001 Gaussia" asteroidi[9] ve Antarktika'da sönmüş bir volkan olan Gaussberg[10], Gauss'un anısına isimlendirilmiş bazı doğal oluşumlardır.
Almanya'nın Dransfeld kentindeki 51 metrelik beton gözlem kulesinin ismi Gauss Kulesi'dir.
Alman yazar Daniel Kehlmann'ın 2005 tarihli romanı Die Vermessung der Welt (Dünya'nın Ölçümü), Gauss ve Alexander von Humboldt'un hayatlarını konu almaktadır.
Ayrıca 2005 yılı Gauss yılı olarak anılmıştır.
Notlar
- ↑ "Matematikçilerin prensi" (Mathematicorum Princeps) lakabı ilk kez, Gauss'un öldüğü yıl Hannover Kralı tarafından bastırılan hatıra madalyonunda kullanılmıştır: ""Carl Friedrich Gauß (1777-1855)"" (Almanca). 23 Temmuz 2012 tarihinde kaynağından arşivlendi. http://web.archive.org/web/20120723042544/http://www.math.uni-hamburg.de/spag/ign/gauss/gaussbio.html. Erişim tarihi: 18 Temmuz.
- ↑ "Gauss and Ceres" (İngilizce). 28 Mart 2015 tarihinde kaynağından arşivlendi. http://web.archive.org/web/20150328122005/http://www.math.rutgers.edu:80/~cherlin/History/Papers1999/weiss.html. Erişim tarihi: 16 Ağustos 2007.
- ↑ Bu hikâye, Gauss'un yakın arkadaşı Wolfgang Sartorius von Waltershausen'in anılarında anlatılmaktadır ve doğruluğu tartışmalıdır: ""Gauss's Day of Reckoning"" (İngilizce). 12 Temmuz 2015 tarihinde kaynağından arşivlendi. http://web.archive.org/web/20150712045041/http://www.americanscientist.org/template/AssetDetail/assetid/50686?&print=yes. Erişim tarihi: 18 Temmuz.
- ↑ Gauss ve en küçük kareler yönteminin keşfi üzerine ayrıntılı bir makale: Stigler, Stephen M. (1981). "Gauss and the Invention of Least Squares". The Annals of Statistics 9: 465-474. http://projecteuclid.org/euclid.aos/1176345451.
- ↑ Gauss ve Öklit dışı geometrilerin keşfi üzerine bir makale: Winger, R. M. (1925). "Gauss and non-Euclidean Geometry". Bulletin of the American Mathematical Society 31: 356-358. http://projecteuclid.org/euclid.bams/1183486559.
- ↑ Asimov (1972)
- ↑ Bell (1986)
- ↑ İngilizce Wikipedia Gauss krateri maddesi
- ↑ İngilizce Wikipedia 1001 Gaussia maddesi
- ↑ İngilizce Wikipedia Gaussberg maddesi
Kaynaklar
- Asimov, Isaac (1972). Biographical Encyclopedia of Science and Technology; the Lives and Achievements of 1195 Great Scientists from Ancient Times to the Present, Chronologically Arranged. New York: Doubleday.
- Bell, E. T (1986). "The Prince of Mathematicians: Gauss". Men of Mathematics: The Lives and Achievements of the Great Mathematicians from Zeno to Poincaré. New York: Simon and Schuster. s. 218–269.
- "Carl Friedrich Gauss". 27 Ekim 2009 tarihinde kaynağından arşivlendi. http://web.archive.org/web/20091027155012/http://www.geocities.com/RainForest/Vines/2977/gauss/english.html. Erişim tarihi: 18 Temmuz 2007.
- "Carl Friedrich Gauss". http://planetmath.org/?op=getobj&from=objects&id=5594. Erişim tarihi: 18 Temmuz 2007.
- Dunnington, G. Waldo (1927). "The Sesquicentennial of the Birth of Gauss". Scientific Monthly XXIV: 402–414. http://www.mathsong.com/cfgauss/Dunnington/1927/.
- Dunnington, G. Waldo (2003). Carl Friedrich Gauss: Titan of Science. The Mathematical Association of America.
- Hall, T. (1970). Carl Friedrich Gauss: A Biography. Cambridge, MA: MIT Press.
- "Gauss and His Children". http://www.gausschildren.org. Erişim tarihi: 18 Temmuz 2007.
- Simmons, J. (1996). The Giant Book of Scientists: The 100 Greatest Minds of All Time. Sydney: The Book Company.
Dış bağlantılar
- http://www.yarindansonra.net/gauss-yontemi-ardisik-dogal-sayilarin-toplanmasi-t2707.0.html
- Focus Dergisi'nden Gauss biyografisi (Türkçe)
- Gauss biyografisi (İngilizce)
- MacTutor Matematik Tarihi Arşivi'ndeki Gauss maddesi (İngilizce)
- Mathematics Genealogy Project'in Gauss sayfası (İngilizce)
- Göttingen Üniversitesi kütüphanesinden Gauss'un tüm eserleri (Almanca)
|