Matematik
Bu maddenin veya maddenin bir bölümünün gelişebilmesi için konuda uzman kişilere gereksinim duyulmaktadır. Ayrıntılar için maddenin tartışma sayfasına lütfen bakınız. Konu hakkında uzman birini bulmaya yardımcı olarak ya da maddeye gerekli bilgileri ekleyerek Vikipedi'ye katkıda bulunabilirsiniz. |
Matematik, (Yunanca μάθημα matema, "bilgi, çalışma, öğrenme") nicelik, yapı, uzay ve değişim gibi konularla ilgilenir. Matematikçiler ve filozoflar arasında matematiğin kesin kapsamı ve tanımı konusunda görüş ayrılığı vardır.
Matematikçiler örüntüleri araştırır ve bunları yeni konjektürler formüle etmekte kullanırlar. Bu konjektürlerin doğruluğunu veya yanlışlığını matematiksel ispat yoluyla çözmeye çalışırlar. Matematiksel yapılar gerçek fenomenleri iyi modelize ettiklerinde matematiksel düşünce doğa hakkında tahmin yürütmemizi ve onun iç yüzünü anlamamızı sağlayabilir. Matematik soyutlama ve mantığı kullanarak ve sistemli çalışmayla fiziksel objelerin biçimlerini ve hareketlerini saymayı, hesaplamayı ve ölçmeyi mümkün kılar ve böylece gelişir. Pratik matematik yazılı kayıtlardan beri insan etkinliği olagelmiştir. Matematik problemlerinin çözümü için gerekli araştırma yıllarca hatta yüzyıllarca süren bir çaba gerektirebilir.
İlk titiz kayıtlara Yunan matematiğinde rastlanır. (Özellikle Öklid'in Elementler kitabında.) Giuseppe Peano (1858-1932), David Hilbert (1862-1943) ve diğerlerinin geç 19 yüzyılda belitsel sistemler üzerine kurdukları çalışmalarından beri matematiksel araştırmada doğruyu kurmanın geleneği değişti. (Artık uygun olarak seçilen aksiyom ve tanımlardan titiz bir şekilde tümdengelim yapılmaktadır.) Matematik Rönesans'a kadar görece yavaş gelişti. Sonra matematikteki yenilikler diğer yeni bilimsel keșiflerle etkileșerek matematiksel keșiflerde günümüzde hala devam eden hızlı bir artış sağladı.
Galileo Galilei (1564-1642) "Kainat dediğimiz kitap, yazıldığı dil ve harfler öğrenilmedikçe anlaşılamaz. O, matematik dilinde yazılmış; harfleri üçgen, daire ve diğer geometrik şekillerdir. Bu dil ve harfler olmaksızın kitabın bir tek sözcüğünü anlamaya olanak yoktur. Bunlar olmaksızın yapılan karanlık bir labirentte amaçsızca dolaşmaktır." Carl Friedrich Gauss (1777-1855) matematiği bilimlerin kraliçesine benzetmiştir. Benjamin Peirce (1809-1880) matematik için bilimlerin sonuçlarının çizilmesi için gereken bilim demiştir. David Hilbert "Biz burada gelişigüzel konuşmayız. Matematik şart koşulan rastgele kuralların olduğu bir oyun gibi değildir. O yalnızca içsel gerekliliğin olduğu kavramsal bir sistemdir, aksi hiçbir şey değil." Albert Einstein (1879-1955), "Matematik kesin olduğunda gerçeği yansıtmaz, gerçeği yansıttığında kesin değildir." Fransız matematikçi Claire Voisin, "Matematikte yaratıcı itki, her yerinde kendini ifade etmeyi denemesidir." der.
Matemetik dünya genelinde doğa bilimleri, mühendislik, bilişim ve finans gibi birçok alanın temel aracıdır. Uygulamalı matematik, matematiksel bilginin diğer alanlara uygulanmasıyla ilgilidir.Bu uygulamalar sayesinde istatistik ve oyun teorisi gibi tamamıyla yeni matematik disiplinleri doğmuştur. Ayrıca matematikçiler soyut matematikle akıllarında herhangi bir kullanım olmadan da yalnızca matematik yapmak için uğraşırlar. Soyut matematikle uygulamalı matematiği ayıran belirgin bir çizgi yoktur. Soyut matematikteki keşifler sıklıkla pratik matematik uygulumalarının başlatıcısı olurlar.
Sözcüğün kökeni
Antik Yunanca matesis kelimesi matematik kelimesinin köküdür ve ben bilirim anlamına gelmektedir. Daha sonradan sırasıyla bilim, bilgi ve öğrenme gibi anlamlara gelen μάθημα (máthema) sözcüğünden türemiştir. μαθηματικός (mathematikós) öğrenmekten hoşlanan anlamına gelir. Osmanlı Türkçesinde ise "Riyaziye" denilmiştir. Matematik sözcüğü Türkçeye Fransızca mathématique sözcüğünden gelmiştir.[1]
Matematik Eğitimi
Matematik, bilimde olduğu kadar günlük hayatta da bir insanın sık sık karşısına çıkar. Matematik, temeli mantığa dayanan bir sistemdir ve zihni geliştiren bir araç olarak kişiye rasyonel bakış açısı kazandırır. Kişiye özgür ve önyargısız bir düşünce ortamı yaratır. İnsanın sistemli, mantıklı, tutarlı düşünmesini sağlar. Bu yüzden matematik dersi ilköğretimden yükseköğretim programlarına kadar her alanda yer alır. İlköğretimde ortaöğretime hazırlık olarak, ortaöğretimde yükseköğretime hazırlık olarak matematik öğretimi yapılır.
Matematiğin Modern Kullanım Alanları
- Cebirsel geometri ve teknikleri, robot ve bilgisayar oyunu modellemelerinde kullanılır.
- Diferansiyel denklemler ve sayısal analiz teknikleri uçak ve motor modellemelerinde, uydu yapımında ve daha genel olarak dinamik sistemlerin değişimlerinin ölçümünde kullanılır.
- Fraktallar, anten teknolojisinde hacmi küçük, yüzey alanı büyük antenlerin yapımında kullanılır. Ayrıca fraktal geometri, canlılarda kılcal damarların düzeni ve kanın akışının izahında kullanılır.
- Kendini kopyalayabilen makineler ve sembolik otomatlar, uzay istasyonlarından Dünyaya gönderilen dijital verinin kaybolan parçalarının yeniden inşa edilmesinde kullanılır.
- Fourier analizi ve teknikleri, iletişim ağlarında verinin çok uzak mesafelere gönderilebilmesi ve kaybın en az olması için kullanılır. Ayrıca, Fourier teknikleri resim, video ve dijital müziğin sıkıştırılmasında kullanılır.
- Hücresel otomatlar, biyolojik canlıların üremelerini ve hastalıkların yayılmalarını modellemek için kullanılır.
- Cebirsel topolojinin bir alt dalı olan uygulamalı homoloji, dijital verinin matematiksel topolojisini belirlemek için kullanılır. Buna en iyi örnek, uzak gezegenlerin fotoğraflarından gezegen yüzeyinin coğrafyasının belirlenmesidir.
- Algoritmik teknikler programlamacılıkta kullanılır.
- Soyut mantık, elektrik devresi ve bilgisayar dizaynında kullanılır.
- Çizge kuramı, veritabanının topolojik ve kombinatorik olarak incelenmesinde kullanılır. Örnek olarak, bir ülkedeki hastanelerin bulundukları yer ile aralarındaki uzaklıkların ideal olup olmadığının belirlenmesini verebiliriz. Bir başka örnek ise, internet sitelerin dağılımlarının incelenmesidir.
Matematiğin konuları
Sayılar
Doğal sayılar[2] Tam sayılar[3] Rasyonel sayılar[4] İrrasyonel sayılar Reel sayılar[5] Karmaşık sayılar[6] Dördeyler[7][8][9] Asal sayılar[10] Sabitler[11] π,e Hiperbolik sayılar Çifte karmaşık sayılar P-sel sayılar Ardışık sayılar Aşkın sayı Mükemmel sayı İkili sayılar Sıfır
Uzay
Cebirsel geometri -- Analitik geometri -- Diferansiyel geometri -- Diferansiyel topoloji -- Cebirsel topoloji -- Lineer cebir --
Hesap
Aritmetik -- Analiz -- Türev -- Kesirli hesap -- Fonksiyonlar -- Trigonometrik fonksiyonlar
Kalkülüs | Vektör hesabı | Diferansiyel denklemler | Dinamik sistem | Kaos kuramı |
Temel matematiksel yapılar
Monoid -- Öbek (matematik) -- Halkalar -- Cisim (Cebir) -- Topolojik Uzaylar -- Çokkatlılar -- Hilbert aksiyomları -- Sıralamalar
Temel matematiksel kavramlar
Cebir -- Kümeler -- Sayılar -- Bağıntılar--Fonksiyonlar -- Limit -- Süreklilik -- Türev ve Türevlenebilirlik -- Analitik geometri -- İntegrallenebilirlik -- Matris --Determinantlar -- Eşyapı -- Homotopi -- İyi-sıralılık ilkesi -- Sayılabilirlik -- Soyutluk -- Oran -- Orantı -- Polinom -- Permütasyon -- Kombinasyon -- Logaritma -- Diziler -- Seriler -- Lineer cebir
Matematiğin ana dalları
Soyut cebir -- Sayılar teorisi -- Cebirsel geometri -- Grup teorisi -- Analiz -- Topoloji -- Çizge Kuramı -- Genel cebir -- Kategori teorisi -- Matematiksel mantık -- Türevsel denklemler -- Kısmi türevsel denklemler -- Olasılık -- Kompleks fonksiyonlar teorisi
Sonlu matematik
Kombinatorik -- Saf küme teorisi -- Olasılık -- Hesap kuramı -- Sonlu matematik -- Kriptografi -- Çizge Kuramı -- Oyun kuramı
Uygulamalı matematik
Mekanik -- Sayısal analiz -- Optimizasyon -- Olasılık -- İstatistik -- Finansal matematik
Finansal matematik
Ünlü kuramlar ve sanılar
Fermat'nın son teoremi -- Riemann hipotezi -- Süreklilik hipotezi -- P=NP -- Goldbach sanısı -- Gödel'in yetersizlik teoremi -- Poincaré sanısı -- Cantor'un diagonal yöntemi -- Pisagor teoremi -- Merkezsel limit teoremi -- Hesabın temel teoremi -- İkiz asallar sanısı -- Cebirin temel teoremi -- Aritmetiğin temel teoremi -- Dört renk teoremi -- Zorn önsavı -- Fibonacci dizisi
Temeller ve yöntemler
Matematik felsefesi -- Sezgici matematik -- Oluşturmacı matematik -- Matematiğin temelleri -- Kümeler teorisi -- Sembolik mantık -- Model teorisi -- Kategori teorisi -- Teorem ispatlama -- Mantık -- Tersine matematik -
Matematik yazılımları
- Mathematica
- Mathcad
- Maple
- Macsyma
- Maxima
- Math Type
- Mupat
- Matlab
- MAP
Ayrıca bakınız
Kaynakça
- ↑ Türk Dil Kurumu
- ↑ Hamilton (1988) (İngilizce)
- ↑ Campbell, Howard E. (1970) (English). The structure of arithmetic. Appleton-Century-Crofts. s. 83. ISBN 0-390-16895-5.
- ↑ Rosen, Kenneth (2007) (English). Discrete Mathematics and its Applications (6th bas.). New York, NY: McGraw-Hill. s. 105, 158–160. ISBN 978-0-07-288008-3.
- ↑ Pugh, Charles Chapman (2002) (English). Real Mathematical Analysis. New York: Springer. s. 11–15. ISBN 0-387-95297-7. https://books.google.com/books?id=R_ZetzxFHVwC.
- ↑ Charles P. McKeague (2011) (English). Elementary Algebra. Brooks/Cole. s. 524. ISBN 978-0-8400-6421-9. https://books.google.com/?id=etTbP0rItQ4C&pg=PA524.
- ↑ "On Quaternions; or on a new System of Imaginaries in Algebra (letter to John T. Graves, dated October 17, 1843)" (English). 1843.
- ↑ Boris Abramovich Rozenfelʹd (1988) (English). The history of non-euclidean geometry: evolution of the concept of a geometric space. Springer. s. 385. ISBN 9780387964584. https://books.google.com/?id=DRLpAFZM7uwC&pg=PA385.
- ↑ Girard, P. R. The quaternion group and modern physics (1984) Eur. J. Phys. vol 5, p. 25–32. (İngilizce) DOI:10.1088/0143-0807/5/1/007
- ↑ Dudley, Underwood (1978) (English). Elementary number theory (2nd bas.). W. H. Freeman and Co.. ISBN 978-0-7167-0076-0.
- ↑ Weisstein, Eric W.. "Constant" (English). MathWorld. 3 Haziran 2016 tarihinde kaynağından arşivlendi. http://web.archive.org/web/20160603022929/http://mathworld.wolfram.com/Constant.html. Erişim tarihi: April 13, 2011.
Dış bağlantı
- Toplum ve bilimler açısından matematik
- Matematik Felsefesi
- Açıköğretim- Matematik öğretimi Hakkında Bilgi
- Matematik Öğretimi Hakkında
- Açıköğretim Matematik Öğrenmek
- Modern Matematik
|
|