Küme
Küme, matematiksel anlamda tanımsız bir kavramdır. Bu kavram "nesneler topluluğu veya yığını" olarak yorumlanabilir. Bu tanımdaki "nesne" soyut ya da somut bir şeydir; fakat her ne olursa olsun iyi tanımlanmış olan bir şeyi, bir eşyayı ifade eder. Örneğin, "Tüm canlılar topluluğu", "Dilimiz alfabesindeki harflerin topluluğu", "Masamın üzerindeki tüm kâğıtlar" tümcelerindeki nesnelerin anlaşılabilir, belirgin oldukları, kısaca iyi tanımlı oldukları açıktır. Dolayısıyla bu tümcelerin her biri bir kümeyi tarif eder. O halde, matematikte "İyi tanımlı nesnelerin bir topluluğuna küme denir" biçiminde bir tanımlama sezgisel olarak ilk başta yeterli olacaktır.
Tanımda geçen nesne sözcüğü aslında yeterince açıklık ifade eden bir sözcük değildir. Ama sezgisel olarak, kümeyi oluşturan nesnelerin iyice tanımlı olduklarını; yani belirgin, başka nesnelerden ayırdedilebilir şeyler olduklarını düşünüyoruz demektir. Bir bakıma, bir kümeyi oluşturan nesnelerin tek tek neler olduklarını düşünmekten çok, bir arada düşünebilir olmaları önemsenir.
Bir kümeyi oluşturan nesnelere o kümenin ögeleri veya batısal terimi ile elemanları adı verilir. Güneş, evrendeki yıldızlar kümesinin bir ögesidir. Bir kümenin ögesi olan bir nesneye o kümenin içindedir ya da kümeye aittir denir. Küme tanımına göre bir öge ya kümenin içindedir ya da değildir.
Küme Kavramları
- Eğer a elemanı A kümesine aitse bu ifade a A diye; değilse aA gösterilir.
- A kümesinin eleman sayısı belirtilirken s(A) veya m(A) ifadesi kullanılır.
- A ile B' nin kesişimi A B şeklinde gösterilir.
- A ile B' nin birleşimi A B şeklinde gösterilir.
- A' nın B'den farkı A/B , B'nin A'dan farkı B/A olarak gösterilir.
- Eğer A kümesinin elemanlarının aynısı B kümesinde de varsa A B(A,B'nin alt kümesidir.) veya B A(B, A'yı kapsar.) ifadesi kullanılır. Eğer yoksa sembollerin üstüne bir çizik atılır.
- Hiçbir ögesi bulunmayan kümeye boş küme denir ve { } ya da şeklinde gösterilir.Bütün kümelerin alt kümesidir.
- Bütün kümeleri kapsayan kümeye evrensel küme denir. ve E şeklinde gösterilir.
- Eğer s(A)=s(B) ise A, B kümesine denktir.Eğer elemanları aynıysa 'eşit'(AB),hiçbir elemanı aynı değilse ayrık küme olurlar.(AB)
- E kümesinde A'dan ayrık olan elemanlar gösterilirken bu elemanlar A'nın tümleyeni kümesinde toplanır.()A'nın üstünde bir virgül veya kısa çizgi olarak gösterilir.
Küme kavramının matematiğe Georg Cantor (1845-1918) ile girdiği kabul edilir. Elbette Cantor'dan önce de, adına küme denilmese de, matematikçiler bu kavramı yer yer örtülü bir şekilde kullanıyorlardı. Cantor, kümeler kuramının temellerine ilişkin kapsamlı soruları ortaya koydu. Onun çalışmaları ve sorularından yola çıkarak matematiğin temelleri incelendi, araştırıldı, çıkmazları keşfedildi, paradokslarından temizlendi. Bu gelişmeler, matematiğin ve özellikle formalist akımın 20. yüzyılın ilk yarısında büyük ürünler vermesini sağladı. Bunun etkisiyle, Türkiye'de örgün öğretim programlarına "Modern Matematik" olarak adlandırılan konular dahil edildi.
Kümelerin Gösterilişi
Kümenin elemanları aşağıdaki 3 yolla gösterilebilir.
- Liste Yöntemi: Kümenin elemanları { } sembolü içine, her bir elemanın arasına virgül konularak yazılır. Örneğin, A = {a, b, {a, b, c}} ise, s(A)=3 tür.
- Ortak Özelik Yöntemi: Kümenin elemanlarını, daha somut ya da daha kolay algılanır biçimde gerektiğinde sözel, gerektiğinde matematiksel bir ifade olarak ortaya koyma biçimidir. A = {x : (x in özeliği)} Burada “x:” ifadesi “öyle x lerden oluşur ki” diye okunur. Bu ifade “x |” biçiminde de yazılabilir.
- Şema Yöntemi:Küme, kapalı bir eğri içinde her eleman bir nokta ile gösterilip noktanın yanına elemanın adı yazılarak (soldaki resim) gösterilir. Bu gösterime Venn Şeması ile gösterim denir.
Kullanılan Simgeler
Simge | Simgenin Açıklaması | Simge | Simgenin Açıklaması |
---|---|---|---|
∈ | Elemanıdır | ∪ | Birleşim |
∉ | Elemanı değildir | ∩ | Kesişim |
∋ | Eleman olarak kapsar | ⊎ | Birden fazla küme bileşenleri |
⊂ | Alt kümesi | ∅ | Boş küme |
⊃ | Üst kümesi | ≇ | Ne yaklaşık nede fiili olarak |
⊆ | Alt küme veya eşit | ≤ | Küçük veya eşit |
⊇ | Üst küme veya eşit | ≥ | Büyük veya eşit |
≠ | Eşit değil | ≮ | Küçük değil |
< | Küçüktür | ≰ | Küçük veya eşit değil |
> | Büyüktür | ≱ | Büyük veya eşit değil |
≡ | Denktir | ≢ | Denk değil |
≈ | Hemen hemen eşit | ≅ | Yaklaşık olarak eşit |
∼ | Benzer | ⋚ | Küçük eşit veya büyük |
≫ | Çok daha büyük | ≪ | Çok daha küçük |
= | Eşit | ≠ | Eşit değil |
Eşit Küme ve Denk Küme
Aynı elemanlardan oluşan kümelere eşit kümeler denir. Eleman sayıları eşit olan kümelere denk kümeler denir.
- A kümesi B kümesine eşit ise A = B biçiminde gösterilir.
- C kümesi D kümesine denk ise C ≡ D biçiminde gösterilir.
Not: Eşit olan kümeler ayın zamanda denktir. Fakat denk kümeler eşit olmayabilir.
Boş Küme
Hiçbir elemanı olmayan kümeye boş küme denir. Boş küme { } veya ∅ sembolleri ile gösterilir. Uyarı: {∅} kümesi boş küme olmayıp bir elemana sahiptir.
Evrensel Küme
Üzerinde işlem yapılan, bütün kümeleri kapsayan kümeye evrensel küme denir. Evrensel küme genellikle E ile gösterilir.