Küme

Küme, matematiksel anlamda tanımsız bir kavramdır. Bu kavram "nesneler topluluğu veya yığını" olarak yorumlanabilir. Bu tanımdaki "nesne" soyut ya da somut bir şeydir; fakat her ne olursa olsun iyi tanımlanmış olan bir şeyi, bir eşyayı ifade eder. Örneğin, "Tüm canlılar topluluğu", "Dilimiz alfabesindeki harflerin topluluğu", "Masamın üzerindeki tüm kâğıtlar" tümcelerindeki nesnelerin anlaşılabilir, belirgin oldukları, kısaca iyi tanımlı oldukları açıktır. Dolayısıyla bu tümcelerin her biri bir kümeyi tarif eder. O halde, matematikte "İyi tanımlı nesnelerin bir topluluğuna küme denir" biçiminde bir tanımlama sezgisel olarak ilk başta yeterli olacaktır.

Tanımda geçen nesne sözcüğü aslında yeterince açıklık ifade eden bir sözcük değildir. Ama sezgisel olarak, kümeyi oluşturan nesnelerin iyice tanımlı olduklarını; yani belirgin, başka nesnelerden ayırdedilebilir şeyler olduklarını düşünüyoruz demektir. Bir bakıma, bir kümeyi oluşturan nesnelerin tek tek neler olduklarını düşünmekten çok, bir arada düşünebilir olmaları önemsenir.

Bir kümeyi oluşturan nesnelere o kümenin ögeleri veya batısal terimi ile elemanları adı verilir. Güneş, evrendeki yıldızlar kümesinin bir ögesidir. Bir kümenin ögesi olan bir nesneye o kümenin içindedir ya da kümeye aittir denir. Küme tanımına göre bir öge ya kümenin içindedir ya da değildir.

İki kümenin kesişimi her iki kümede bulunan ortak ögelerden oluşur. Venn diyagramında gösterimi.

Küme Kavramları

Küme kavramının matematiğe Georg Cantor (1845-1918) ile girdiği kabul edilir. Elbette Cantor'dan önce de, adına küme denilmese de, matematikçiler bu kavramı yer yer örtülü bir şekilde kullanıyorlardı. Cantor, kümeler kuramının temellerine ilişkin kapsamlı soruları ortaya koydu. Onun çalışmaları ve sorularından yola çıkarak matematiğin temelleri incelendi, araştırıldı, çıkmazları keşfedildi, paradokslarından temizlendi. Bu gelişmeler, matematiğin ve özellikle formalist akımın 20. yüzyılın ilk yarısında büyük ürünler vermesini sağladı. Bunun etkisiyle, Türkiye'de örgün öğretim programlarına "Modern Matematik" olarak adlandırılan konular dahil edildi.

Kümelerin Gösterilişi

Kümenin elemanları aşağıdaki 3 yolla gösterilebilir.


Kullanılan Simgeler

Simge Simgenin Açıklaması Simge Simgenin Açıklaması
Elemanıdır Birleşim
Elemanı değildir Kesişim
Eleman olarak kapsar Birden fazla küme bileşenleri
Alt kümesi Boş küme
Üst kümesi Ne yaklaşık nede fiili olarak
Alt küme veya eşit Küçük veya eşit
Üst küme veya eşit Büyük veya eşit
Eşit değil Küçük değil
< Küçüktür Küçük veya eşit değil
> Büyüktür Büyük veya eşit değil
Denktir Denk değil
Hemen hemen eşit Yaklaşık olarak eşit
Benzer Küçük eşit veya büyük
Çok daha büyük Çok daha küçük
= Eşit Eşit değil

Eşit Küme ve Denk Küme

Aynı elemanlardan oluşan kümelere eşit kümeler denir. Eleman sayıları eşit olan kümelere denk kümeler denir.

Not: Eşit olan kümeler ayın zamanda denktir. Fakat denk kümeler eşit olmayabilir.

Boş Küme

Hiçbir elemanı olmayan kümeye boş küme denir. Boş küme { } veya sembolleri ile gösterilir. Uyarı: {∅} kümesi boş küme olmayıp bir elemana sahiptir.

Evrensel Küme

Üzerinde işlem yapılan, bütün kümeleri kapsayan kümeye evrensel küme denir. Evrensel küme genellikle E ile gösterilir.


Ayrıca bakınız

This article is issued from Vikipedi - version of the 9/24/2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.