Eksiklik teoremi
Kurt Gödel'in 1931 yılında doktorasında verdiği "Principia Mathematica Gibi Dizgelerin Biçimsel Olarak Karar Verilemeyen Önermeleri Üzerine" başlıklı makalesinde 4. önerme olarak geçer. Sezgisel olarak matematikte belitlere (aksiyom) dayanan her sistemin tutarlı olması dahilinde eksik olması gerektiğini bildirir. Gödel'in ifadesiyle:
"Her -tutarlı yinelgen tamdeyimler sınıfı K'ya öyle yinelgen r sınıf-imleri tekabül eder ki, bu durumda, ne vGnr ne de ~(vGnr), Flg(K)'ya ait olur (Burada v, r'nin bağsız değişken idir)."
Daha Türkçe bir anlatımla:
"Sayı kuramının bütün tutarlı ilksavlı formülasyonları karar verilemeyen önermeler içerir."
Bu önermeyi biraz açacak olursak, tutarlı biçimsel bir dizge (sistem) kurallara ve belitlere dayanıyorsa bu dizge kesinlikle karar verilemeyen (ne doğru ne de yanlış olduğu kanıtlanabilen) önermeler içerecektir. Gödel'in ikinci teoremi, her biçimsel dizgenin sayılar kuramına eşbiçimli (izomorfik) olduğunu söyler. Bu durumda bu teoremle, sayı kuramının her formülasyonunun eksik olması gerektiği kanıtlanmıştır.
Bu karar verilemeyen önermeler için en çok bilinen örnekler; (sayılar kuramında) Seçim Beliti, (geometride) Pararlellik Beliti, (mantıkta) Eubulides Paradoksu, vs...
En çarpıcı ve yalın olanı Eublides Paradoksu'dur. "Bu önerme yanlıştır" önermesi karar verilemez bir önermedir. Önerme yanlış olduğu varsayılırsa doğru olduğunu ama doğru olduğu varsayılırsa yanlış olduğunu gösteriyor. Bu tür kendi hakkında konuşan önermelere "kendine-göndergeli önerme" terimi ilk Douglas R. Hofstadter 1989'da Türkiye'de Kabalcı yayınlarından çıkan "Gödel, Escher, Bach" kitabında kullanmıştır.
Pek açık olmayan bir örnek ise Paralellik Belitidir. Euclides (Öklit) M.Ö. 300'de yazmış olduğu ve hala geçerli olan geometri kitabı Elementlerde tüm geometriyi sezgisel olarak 5 belite dayandırır. Bu 5 belitten sonuncusunun diğer dördünden farklı olduğu göze çarpmış ve matematikçiler bu beliti kanıtlamak için çok uğraşlar vermişlerdir ama kimse başaramamıştır. Daha sonra Lobachevsky, Bolyai ve gizlice Gauss birbirlerinden habersiz bu beş belitin tersinin alınarak da başka bir geometriye ulaşılabileceğini gösterdiler. Belit Playfair'in versiyonuyla "Bir doğrunun dışındaki bir noktadan geçen ve o doğruya paralel olan sadece ve sadece bir doğru bulunur." önermesidir. Bu önermenin tersi olan "... en az iki doğru bulunur" önermesi Hiperbolik geometri (ya da Lobachevsky-Bolyai-Gauss Geometrisi) diye yeni bir geometriye kapı açmıştır.
Bu örnekle Gödel'in bu teoreminin aslında matematikte dizgeleri (sistemleri) dallara ayırarak yeni kapılar araladığı görülebilir.
Gödel, bu teoremle Hilbert'in Programı'nda sorduğu "Matematik tam mıdır?" sorusuna hayır yanıtını verir. Hilbert, matematiği paradokslardan ve tutarsızlıklardan kurtarmak amacıyla, sınırlı ve tam bir aksiyomlar kümesi ile tüm mevcut teoremlere sağlam bir zemin kurmayı amaçlamış ve gerçel analiz gibi karmaşık sistemlerin bu zemin üzerine oturmuş daha basit sistemler ile kanıtlanabileceğini önermişti. Tüm matematiğin tutarlılığını basit aritmetiğe indirgemeyi amaçlayan bu çaba, eksiklik teoremi ile boşa çıkmıştır.
Ayrıca bakınız
- Tutarlılık
- Omega-Tutarlılık
- Önermeler Mantığı
- Sayı Kuramı
- Eşbiçimlilik
- Yinelgen
- Sınıf-imi
- Öklid dışı geometri
- Paradoks
- Hilbert'in Programı
- Meta-Matematik
- Gödel'in eksiklik teoremi