Euler spirali

Çift sonlu Euler spirali.

Euler spirali, eğimi eğrinin uzunluğuyla doğrusal olarak degişen bir eğridir. Euler spiralleri yaygın olarak spiros, clothoids veya Cornu spiralleri olarak da adlandırılır. Euler spirallerinin kırınım hesaplamalarında uygulamaları vardır. Genellikle demiryolu ve karayolu mühendisliklerinde teğet eğrisi ve dairesel eğri arasındaki geometriyi bağdaştırmaya ve aktarmaya yarayan geçiş eğrisi olarak kullanılır. Teğet eğrisi ve dairesel eğri arasındaki geçiş eğrisinin eğimindeki lineer değişim prensibi Euler spiralinin geometrisini belirler:

Uygulamaları

Geçiş eğrisi

Dairesel yörüngede hareket eden bir nesne merkezcil ivmeye maruz kalır. Bir araç düz bir yörüngeden dairesel bir yörüngeye yaklaşırken aniden teğet noktasında başlayan merkezcil ivmeyi hissedecektir. İlk demiryollarında trenlerin düşük hızla hareket etmesinden ve yörüngelerin geniş yarıçaplı eğrilerden oluşmasından dolayı şimdiki yanal kuvvet uygulaması bir sorun oluşturmamaktaydı. Demiryolu taşıtlarının hızı günden güne arttıkça konforun gerekli olduğu ortaya çıktı. Bu yüzden de merkezcil ivme yolculuk mesafesiyle doğrusal olarak artmaktadır. Konforun sağlanması için eğimi alınan mesafeyle doğrusal olarak artan bir eğri çözüm olarak bulundu. Bu geometrik ifade Euler spiralidir. Leonhard Euler’in geometri çözümünden habersiz olarak Rankine Euler spiralinin dairesel bir eğriye yakınsayan bir parabol üzerindeki küçük açısal değişiklikler üzerinden yapılan bir yaklaşımı olan kübik eğriden (3. dereceden polinom) bahsetmiştir. Marie Alfred Cornu ve daha sonra başka inşaat mühendisleri de Euler spiralinin hesaplamalarını birbirlerinden bağımsız olarak çözmüşlerdir. Günümüzde Euler spiralleri yaygın olarak demiryolu ve karayolu mühendisliklerinde teğet eğrisi ve yatay dairesel eğri arasında geçişi ve konforu sağlamak için kullanılır.

Optik

Cornu spirali kırınım desenini betimlemek için kullanılır.[1]

Formülasyon

Semboller

Eğim yarıçapı
Spiralin sonundaki dairesel eğimin yarıçapı
Başlangıç noktasından spiral üzerindeki herhangi bir noktaya kadar uzanan eğrinin açısı.
Bütün spiralin açısı
Başlangıç noktasından başlanarak spiral boyunca katledilen uzunluk
Spiral eğrisinin uzunluğu

Çıkarımlar

Sağ taraftaki grafik Euler spiralinin negatif x ekseni boyunca uzanmış düz bir çizgiyle bir çember arasındaki geçiş eğrisi olarak kullanıldıgını göstermektedir. Spiral pozitif x ekseni üzerindeki orijinden başlayarak gitgide saat yönünün tersinde dönerek çembere değer. Spiral ilk kadrandaki çift sonlu Euler spiralinin yukarısındaki küçük bir kısımdır.

Eğim tanımından yola çıkılarak,
Aşağıdaki şekilde yazarsak,
ya da ::
Böylece
olur.
Eğer
olduğunu kabul edersek,
.
Böylece :: elde ederiz.

Fresnel integral açılımı

A'nın olduğu yani Euler eğrisinin normalize edilebilir olduğu durumlarda kartezyen koordinatlar Fresnel integrali (ya da Euler integrali) ile aşağıdaki gibi belirlenir:

Kosinüs açılımına göre C(L)'yi :

Sinüs açılımına göreyse S(L)'yi:

bu şekillerde elde ederiz.

Normalize etme ve sonuç

Verilen Euler eğrisi için:

ya da

geçerliyse,

where and .

Euler spiralinin (x,y) cinsinden çözümünün elde edilme süreci şu şekilde belirlenebilir:

Normalizasyon süresince,

Normalizasyon genel olarak Lı 1'den küçük bir değere götürür.

Örnekleme

Verilen:

değerleri için,

olur.

Euler spiralini √60,000 küçültürsek, yani normalize Euler spiralinin 100√6 olması durumunda:

ve

Yukarıda iki açı da aynı. Bu orijinal ve normalize edilmiş Euler spirallerinin benzer geometrilere sahip oldugunu göstermektedir. Normalize eğrinin konumu Fresnel integraliyle belirlenebilirken, orijinal Euler spiralinin konumu ise denormalizasyonla elde edilir.

Normalize Euler spiralinin diğer özellikleri

Normalize Euler spirali şu şekilde ifade edilir:

ve normalize Euler spiralinin bazı özellikleri şunlardır:

ve

Euler spiral üretmek için gereken kodlar

Aşağıdaki Sage koduyla yukarıdaki ikinci grafik elde edilebilir. İlk 4 satır Euler spirali bileşenlerini ifade eder. fresnel fonksiyonlarının yerine iki Taylor seri açılımı adapte edilmiştir. Geriye kalan kodlarsa sırayla teğet ve daireyi ifade eder.

  var('L')
  p = integral(taylor(cos(L^2), L, 0, 12), L)
  q = integral(taylor(sin(L^2), L, 0, 12), L)
  r1 = parametric_plot([p, q], (L, 0, 1), color = 'red')
  
  r2 = line([(-1.0, 0), (0,0)], rgbcolor = 'blue')
  
  x1 = p.subs(L = 1)
  y1 = q.subs(L = 1)
  R = 0.5
  x2 = x1 - R*sin(1.0)
  y2 = y1 + R*cos(1.0)
  r3 = circle((x2, y2), R, rgbcolor = 'green')
  show(r1 + r2 + r3, aspect_ratio = 1, axes=false)

Aşağıdaki Mathematica kodu da Euler spiralinin bileşenleri içindir; wolframalpha.com'da sorunsuz bir şekilde çalışır.

  ParametricPlot[
   {FresnelC[Sqrt[2/\[Pi]] t]/Sqrt[2/\[Pi]],
    FresnelS[Sqrt[2/\[Pi]] t]/Sqrt[2/\[Pi]]},
   {t, -10, 10}]

Kaynakça

  1. Eugene Hecht (1998). Optics (3rd edition). Addison-Wesley. s. 491. ISBN 0201304252.
This article is issued from Vikipedi - version of the 3/30/2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.