Euler toplaması

Euler toplamı, yakınsak ve ıraksak diziler için kullanılan bir toplam yöntemidir. Bir Σan dizisinin Euler dönüşümü bir değere yakınsıyorsa bu değer Euler toplamı olarak adlandırılır.

q ≥ 0 olmak koşuluyla Euler toplamı, (E, q) olarak gösterilen genel bir yöntemler kümesi içinde sayılabilir. (E, 0) olağan (yakınsak) toplamı belirtirken (E, 1) olağan Euler toplamını ifade etmektedir. Bu yöntemlerin tümü Borel toplamından güçsüzken q > 0 için Abel toplamıyla karşılaştırılamazlar.

Tanım

Euler toplamı, almaşık dizilerin yakınsaklığını hızlandırmak amacıyla kullanılmaktadır. Yöntem, ıraksak toplamların hesaplanmasını da olanaklı kılmaktadır.

Bu yöntem yineleme yoluyla uygulanamamaktadır. Bunun nedeni

eşitliğinin sağlanıyor oluşudur.

Örnekler

Burada bir tamsayıyı, ζ ise Riemann zeta işlevini göstermektedir.

Uygun değerleri için dizi 'ye yakınsamaktadır.

Ayrıca bakınız

Kaynakça

  • Korevaar, Jacob (2004). Tauberian Theory: A Century of Developments. Springer. ISBN 3-540-21058-X. 
  • Shawyer, Bruce & Bruce Watson (1994). Borel's Methods of Summability: Theory and Applications. Oxford UP. ISBN 0-19-853585-6. 
This article is issued from Vikipedi - version of the 2/26/2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.