Çokdeğişirli normal dağılım
Olasılık yoğunluk fonksiyonu | |
Yığmalı dağılım fonksiyonu | |
Parametreler | konum parametresi (reel vektör) kovaryans matrisi (pozitif-kesin reel matris) |
---|---|
Destek | |
Olasılık yoğunluk fonksiyonu (OYF) | |
Yığmalı dağılım fonksiyonu (YDF) | |
Ortalama | |
Medyan | |
Mod | |
Varyans | (kovaryans matrisi) |
Çarpıklık | 0 |
Fazladan basıklık | 0 |
Entropi | |
Moment üreten fonksiyon (mf) | |
Karakteristik fonksiyon |
Olasılık kuramı ve istatistik bilim kollarında, çokdeğişirli normal dağılım veya çokdeğişirli Gauss-tipi dağılım, tek değişirli bir dağılım olan normal dağılımın (veya Gauss-tipi dağılımın) çoklu değişirli hallere genelleştirilmesidir.
Genel hal
Yığmalı dağılım fonksiyonu
Genel bir tanımla, olarak ifade edilen yığmalı dağılım fonksiyonu, bir rassal vektörun, vektörüne eşit veya bu vektör değerlerden daha az olduğu zaman karşıtı olarak bulunan bütün olasılıkların toplamini ifade eden bir fonksiyondur. Çokdeğişirli normal dağılım için bir cebirsel kapalı eşitlik şeklinde bir ifadesi bulunmamaktadır. Ancak bu fonksiyonun sayısal değerlerini tahmin etmek için birkaç algoritma bulunmaktadır. Bu algoritma kullanışına bir örnek için verilen referenslarda MVNDST adlı algoritmaya bakınız. ([1] veya [2] ).
Bir karşıt örneğin
İki rassal değişken olan X ve Y tek tek normal dağılım gösterseler bile bu iki rassal değişkenin bileşik olarak (X, Y) bir çoklunormal dağılım göstereceği anlamına gelmez. Buna basit bir örnekte eğer |X| > 1 ise Y=X olması ve eğer |X| < 1 ise Y = -X olmasıdır. Bu gerçek ikiden fazla sayıda rassal değişken içinde doğrudur.
Buna benzer bir karşıt örnegin için normal olarak dağılımlı olup ve korrelasyon olmaması bağımsızlık ifade etmez maddesine bakınız.
Normal dağılım gösterme ve bağımsızlık
Eğer X ve Y rassal değişkenleri tek tek normal dağılım gösterirlerse ve birbirlerinden istatistiksel olarak bağımsızlarsa, o halde bu iki rassal değişken bileşiği (yani rassal vektörü) ikideğişirli normal dağılım gösterir veya diğer bir ifade ile ortaklaşa normal dağılımlılardır. Ancak ortaklaşa normal dağılım gösteren her iki rassal değişkenin birbirinden bağımsız olduğu gerçek değildir.
İki değişirli hal
İki boyutlu singuler olmayan halde, ikideğişirli normal dağılım için (ortalamalar (0,0)da ise) olasılık yoğunluk fonksiyonu şöyle tanımlanır:
Burada terimi ve arasındaki korelasyonu gösterir ve şu ifade kovaryans matrisi olur:
- .
Afin dönüşümü
Geometrik açıklama
Bir singuler olmayan çokdeğişirli normal dağılım için aynı yoğunluk gösteren kontur eğrileri elipsoitlerdir; yani ortalamada merkezleşmiş çok-boyutlu-kürelerin doğrusal dönüşümleridir. [3]. Bu elipsoitlerin esas eksenlerinin yönleri kovaryans matrisinin özvektörleri (eigenvector) olarak verilmiştir. Esas eksenlerin orantılı uzunluklarının karesi bunlara karşit olan özdeğerler (eigenvalues) olurlar. Bu halde şu ifade ortaya çıkar:
Bunun yanında, U bir rotasyon matrisi olarak seçilebilir; çünkü bu eksenin tersini alınca hiç etkilenmemektedir; buna karşıt olarak bir matris sütûnunun tersi alınırsa unun determinantının işaretleri değişir. ile özetlenen dağılım böylelikle ifadesinin ile ölçeğinin değiştirilmesi, u ile rotasyon yapılması ve ile çevrilmesi ile ortaya çıkar.
Bunun aksine bakılırsa, ve tam ranklı U matrisi ve pozitif çapraz girdiler olan değerleri için yapılan herhangi bir seçim, bir singuler olmayan çokdeğişirli normal dağılım ortaya çıkartır. Eğer herhangi bir sıfıra eşitse ve u kare matris ise, bunun sonucunda ortaya çıkan kovaryans matrisi bir singuler matris olur. Geometrik olarak bunun açıklaması her kontur elipsoitin sonsuz olarak inceleşmesi ve n-boyutlu bir uzayda 0 bir hacim kapsamasıdır, çünkü en aşağı bir tane esas eksenin uzunluğu sıfır olmaktadır.
Korelasyonlar ve bağımsızlık
Genel olarak, rassal değişkenler birirleriyle çok yüksek derecede bağımlı olabilirler ama hiç korelasyon göstermiyebilirler. Ama, eğer bir rassal vektör çokdeğişirli normal dağılım gösterirse,o halde aralarında hiç korelasyon göstermeyen iki veya daha fazla sayıda vektör parçası istatistiksel olarak birbirinden bağımsızdır. Bundan da şu sonuc çıkartılabilir: eğer vektörün herhangi iki veya daha fazla parçası ikişer ikişer bağımsızlık gösteriyorsa, bu parçalar birbirinden bağımsızdırlar.
Fakat ayrı ayrı olarak ve marjinal olarak, iki rassal değişken normal dağılım gösterirlerse ve aralarında hiç korelasyon bulunmazsa, o halde bu iki değişkenler birbirinden bağımsızdır. Normal dağılım gösteren iki rassal değişken, ortaklaşa normal dağılım göstermiyebilirler; yani bir parçası oldukları vektör bir çokdeğişkenli normal dağılım göstermiyebilir.İki korelasyon göstermeyen ama normal dağılım gösteren fakat bağımsız olmayan rassal değişken için örneğin normal dağılım gösterip hiç korelasyon göstermemek bağımsız olmak demek değildir maddesine bakınız.
Daha yüksek momentler
Genel olarak X için kinci derecede momentler şöyle tanımlanmaktadır:
Burada
Merkezsel inci derecede momentler şöyle verilir:
(a)Eger tek ise olur. (b)Eger cift ise ve , o halde
Burada toplam setinin (sıralanmamış) çiftler üzerine tahsis edilmelerinin hepsi birlikte alınmasıdır. Bu işlem sonucunda toplam içinde sayıda terim bulunur, Her bir terim tane kovaryansın çarpımıdır.
Özellikle, 4-üncü derecedeki momentler şöyle verilirler:
Dört değişken halindeki dördüncü derece moment içinde üç tane terim bulunur.
Altıncı-derecede moment içinde (3 × 5 =) 15 terim; sekizinci derecede momentler arasında (3 × 5 × 7) = 105 terim bulunur. Altıncı-derecedeki moment için ifade şöyle genişletilebilir:
Koşullu dağılımlar
Eğer ve şu şekilde kısımlara ayrılırlarsa:
- Büyüklüğü şu olur;
- Büyüklüğü şu olur:
Bu halde ifadesiyle koşullu olan şöyle özetlenen çokdeğişirli normal dağılım gösterir:
Burada
olur ve covaryans matrisi şöyle verilir:
Bu matris içinde ifadesinin Schur tamamlayıcısı olur.
Bundan dikkati çekmesi gereken şu sonuçlar çıkartılır: değerinin olduğunu bilmek varyansı değiştirir. Daha şaşırtıcı olarak, ortalama değeri ile kayma gösterir. Eğer bilinmese idi, nin gösterecegi dağılım olurdu.
matrisi regresyon katsayıları olarak da bilinirler.
Fisher'in enformasyon matrisi
Bir normal dagilim için Fisher'in enformasyon matrisi bir ozel sekil alir. için Fisher'in enformasyon matrisinin elemani su olur:
Burada
- trace fonksiyonu olur.
Kullback-Leibler ayrılımı
den dağılımına Kullback-Leibler ayrılımı şöyle verilir:
Parametrelerin kestrimi
Cokdegisirli normal dagilimin kovaryansinin maksimum olabilirlik kestiriminin elde edilmesi sasirtici sekilde duzenli ve zekice yapilmistir. Kovaryans matrislerin kestirimi maddesine bakin. Bir N-boyutlu cokludegisirli normal dagilimin olasilik yogunluk fonksiyonu soyle verilir:
ve kovaryans matrisinin maksimum olabilirlik kestirimi soylr yazilir:
Bu basit olarak bir n buyuklugunde bir orneklem için orneklem kovaryans matrisidir. Bu bir yanli kestirim olup beklenen degeri
Oliur. Bir yansiz orneklem kovaryansi kestirmi sudur:
Entropi
Çokdeğişirli normal dağılım için diferansiyel entropi ifadesi şöyle verilir:[4]
Burada covaryans matrisi olan nın determani olur:
Çokdeğişirli normallik sınamaları
Çokdeğişirli normallik sınamaları bir verilmiş veri seti için bir teorik çokdeğişirli normal dağılıma benzerlik olup olmadığını sınamak için hazırlanmıştır. Bu sınamalarda sıfır hipotez veri setinin çokdeğişirli normal dağılıma benzerlik gösterdiğidir. Eğer sınama ile bulunan p-değeri yeter derece küçük ise (yani genellikle 0,05 veya 0,01den daha küçük ise), sıfır hipotez rededilir ve verinin çokludeğişirli normal dağılım göstermediği kabul edilir. Bu çokludeğişirli normallik sınamaları arasında popüler olan Cox-Small sınamasıdır: [5]. Smith ve Jain'in Friedman-Rafsky testini adaptasyonu için şu referansa bakın: [6]
Dağılımdan değerlerin bulunması
ortalama vektörü ve (simetrik ve pozitif kesin olması gereken) kovaryans matrisi olan bir -boyutlu çokdeğişirli normal dağılımdan bir rastgele vektör çekmek için çok kullanılan bir yöntem şöyle uygulanır:
- için (matris kare kökü olan) Çoleski dekompozisyonu hesap edilir. Yani koşuluna uyan tek bir alt ucgensel matris olan bulunur.
- Örneğin Box-Müller dönüşümü ile üretilip elde edilebilen tane biribirine bağımsiz normal dağılım gösteren değişebilir parçalarından olusan bir vektör bulunur.
- , ifadesine eşit olarak bulunur.
Notlar
- ↑ (FORTRAN yazılımlı kodu kapsar.)
- ↑ ( MATLAB yazılımlı koduda kapsar )
- ↑ Nikolaus Hansen. "The CMA Evolution Strategy: A Tutorial". 27 Eylül 2011 tarihinde kaynağından arşivlendi. http://web.archive.org/web/20110927081250/http://www.bionik.tu-berlin.de/user/niko/cmatutorial.pdf.
- ↑ Gokhale, DV; NA Ahmed, BC Res, NJ Piscataway (May 1989). "Entropy Expressions and Their Estimators for Multivariate Distributions". Information Theory, IEEE Transactions on 35 (3): 688-692. http://dx.doi.org/10.1109/18.30996.
- ↑ Cox, D. R.; N. J. H. Small (Ağustos 1978). "Testing multivariate normality (Çokdeğişirli normallik testi)". Biometrika 65 (2): 263–272.
- ↑ Smith, Stephen P.; Anil K. Jain (Eylul 1988). "A test to determine the multivariate normality of a dataset (Bir veri setinin çokdeğişirli normallik gösterip göstermediği için bir sınama)". IEEE Transactions on Pattern Analysis and Machine Intelligence 10 (5): 757–761. DOI:10.1109/34.6789.
Kaynak
|