Yönlü türev

Matematikte verilmiş bir P noktasındaki ve V vektörü boyuncaki çok değişkenli bir fonksiyonun yönlü türevi sezgisel olarak fonksiyonun P noktasında, V vektörü boyuncaki anlık değişim oranını temsil eder. Bu yüzden, kısmi türev fikrinin genelleştirmesidir çünkü kısmi türevler alınırken yön her zaman koordinat eksenlerine paralel olarak alınmaktadır.

Yönlü türev, Gâteaux türevinin özel bir durumudur.

Tanım

Bir skaler fonksiyonunun bir vektörü boyuncaki yönlü türevi

limiti tarafından verilen fonksiyondur.

Bazı yazarlar yerine Dv 'yi de kullanmaktadırlar. Eğer fonksiyonu 'te türevlenebilir ise, o zaman yönlü türev herhangi bir vektörü boyunca vardır ve

olur. Burada, sağdaki gradyanı, ise Öklid iç çarpımını temsil etmektedir. Herhangi bir noktasında, 'nin yönlü türevi, 'deki vektörü boyunca noktasındaki değişim oranını temsil etmektedir. Yukarıdaki tanım her ne kadar herhangi bir vektör (hatta sıfır vektörü) için tanımlı olsa da, genelde yönler birimleştirilmiş olarak alınır ki böylece birim vektör olur.[1]

Özellikler

Sırdan türevin birçok özelliği yönlü türev için de geçerlidir. Bunlar, bir p 'nin komşuluğunda tanımlı ve p 'de türevlenebilir olan herhangi bir f ve g fonksiyonları için şu özellikleri kapsar:

Diferansiyel geometri

M, bir türevlenebilir manifold ve p, M 'nin noktası olsun. f, p 'nin komşuluğunda tanımlı ve p 'de türevlenebilir bir fonksiyon olsun. Eğer v M 'ye p noktasında teğet vektör ise, o zaman f 'nin v boyuncaki yönlü türevi (değişik şekillerde (Kovaryant türev), (Lie türevi) veya olarak da gösterilir.), şu şekilde tanımlanabilir: γ : [-1,1] → M, γ(0) = p ve γ'(0) = v olan türevlenebilir bir eğri olsun. O zaman yönlü türev

ile tanımlanır. Bu tanımın, γ, γ'(0) = v olacak şekilde seçildiği sürece, γ 'nın seçiminden bağımsız olduğu kanıtlanabilir.

Normal türev

Normal türev, uzaydaki bir yüzeye normal (yani dik) yönde veya daha genel bir şekilde bir hiperyüzeye dik olan normal vektör alanı boyunca alınan bir yönlü türevdir. Örnek olarak Neumann sınır koşulunu görünüz. Eğer normal yön ile gösterilirse, o zaman ƒ 'nin yönlü türevi bazen ile gösterilir.

Ayrıca bakınız

Kaynakça

  1. Bakınız Tom Apostol (1974), Mathematical Analysis, Addison-Wesley, ss. 344-345, ISBN 0-201-00288-4
This article is issued from Vikipedi - version of the 3/30/2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.