Dirichlet serisi

Matematikte Dirichlet serisi

biçimindeki herhangi bir seriyi ifade etmektedir.

Burada s ve an (n = 1, 2, 3, …) karmaşık sayılardır. Bu ifade genel Dirichlet serisinin özel bir durumudur.

Dirichlet serileri çözümlemeli sayı kuramında önemli bir yere sahiptir. Riemann zeta işlevinin en ünlü tanımı Dirichlet L-işlevlerinde olduğu gibi Dirichlet serilerine gerek duymaktadır. Seri, Johann Peter Gustav Lejeune Dirichlet'ye adanmıştır.

Örnekler

En ünlü Dirichlet serisi

Riemann zeta işlevidir. Bir diğeri

biçiminde ifade edilen seridir. Burada μ(n) Möbius işlevini belirtmektedir. Bunlar ve aşağıda sıralanan serilerin büyük bir bölümü bilinen serilere Möbius evirtimi ve Dirichlet katlaması uygulanarak elde edilebilmektedir. Örneğin, bir Dirichlet karakteri olmak koşuluyla

ifadesine ulaşılır. Burada bir Dirichlet L-işlevini göstermektedir.

Diğer özdeşlikler ise şunlardır:

φ(n) totient olmak koşuluyla

ve

Burada σa(n) bölen işlevi göstermektedir. Bu işlevi içeren diğer özdeşlikler

olarak yazılabilir.

Zeta işlevinin logaritması

biçiminde tanımlanmaktadır. Bu ifade Re(s) > 1 için geçerlidir. von Mangoldt işlevini göstermektedir. Buradan logaritmik türev

olarak hesaplanır.

Liouville işlevi () kullanılarak

ifadesine ulaşılır.

Ramanujan toplamı da benzer bir örnek sunmaktadır.

Dirichlet serisinin analitik özellikleri: Yakınsaklık yatay ekseni

Karmaşık sayılar kümesinde tanımlı {an}nN işlevi için

ifadesi karmaşık değişken s'nin bir işlevi olarak tanımlanabilmektedir.

{an}nN bir sınırlı seriyse buna karşılık gelen f Dirichlet serisi s'nin yarı açık düzleminde mutlak yakınsar (Re(s) > 1 olmak koşuluyla). Genel olarak, an = O(nk) eşitliği sağlanıyorsa seri Re(s) > k + 1 yarı düzleminde mutlak yakınsar.

an + an + 1 + ... + an + k toplamlar kümesi n'de sınırlı ve k ≥ 0 ise yukarıdaki sonsuz seri Re(s) > 0 koşulunu sağlayacak biçimde yakınsar.

Her iki durumda da f, yarı açık düzlemde tanımlı bir analitik işlevdir.

Bir Dirichlet serisinin yakınsaklık yatay ekseni karmaşık düzlemdeki dik doğrunun gerçel ekseni kestiği nokta olarak tanımlanmaktadır. Böylece, bu noktanın sağında kalan bölge yakınsaklığı, solunda kalan bölge ıraksaklığı simgeler. Bu, üs serisindeki yakınsaklık yarıçapına benzer bir kavramdır.

Türevleri

eşitliği sağlanıyorsa

ifadesi geçerlidir. Bir ƒ(n) tümüyle çarpımsal işlevi tanımlanabiliyor ve seri Re(s) > σ0 için yakınsıyorsa

ifadesi Re(s) > σ0 için yakınsar. Burada von Mangoldt işlevini göstermektedir.

Çarpımları

ve

olduğu varsayılsın.

F(s) ve G(s), s > a ve s > b için mutlak yakınsak ise

ifadesine ulaşılır.

a = b ve ƒ(n) = g(n) eşitlikleri sağlanıyorsa

sonucu elde edilir.

İntegral dönüşümleri

Dirichlet serisinin Mellin dönüşümü Perron formülüyle hesaplanabilmektedir.

Ayrıca bakınız

Kaynakça

This article is issued from Vikipedi - version of the 2/15/2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.