Fourier dönüşümü

Fourier dönüşümü, sürekli ve ayrık olarak ikiye ayrılabilir. İki dönüşüm de bir nesneyi ortogonal iki uzay arasında eşler. Sürekli nesneler için dönüşüm:

ve

şeklinde verilir. Yukarıdaki dönüşümde görüleceği üzere x uzayındaki bir nesne k uzayında tanımlanmıştır. Bu dönüşüm diferansiyel denklemlerin çözümünde çok büyük rahatlık sağlar zira bu dönüşüm sayesinde x uzayındaki diferansiyel denklemler k uzayında lineer denklemler olarak ifade edilirler. K uzayında bu denklemin çözümü bulunduktan sonra ters dönüşümle x uzayındaki karşılığı elde edilir, ki bu diferansiyel denklemin çözümüdür. Birinci dönüşümdeki ifade ikinci dönüşümde yerine oturtularak,

,

ifadesine ulaşılır. Parantez içindeki ifadenin olduğu görülebilir. Anlaşıldığı üzere eşlemesine Fourier Dönüşümü, eşlemesine de Ters Fourier Dönüşümü denir ve bu eşlemeler (mapping) yapılırken baş harfleri büyük yazılarak gösterilir (FD ve TFD). Parantez içindeki ifadenin Delta fonksiyonunun temsili olması ise açıkça bir düz ve bir ters Fourier dönüşümü yapılan bir ifadenin kendine eşit olmasından kaynaklanır. Dönüşüm uzayları keyfi seçilebilir ancak fizikte, konum uzayından momentum uzayına ve zaman uzayından enerji uzayına De Broglie-Einstein denklemleriyle geçişler tanımlanmıştır.

Giriş

Örnek

Aşağıdaki görüntülerde Fourier dönüşümünün veren bir görsel ilüstrasyon sağlama ölçümü olan bir frekans bir özel fonksiyon içinde mevcuttur.Fonksiyon f(t) = cos(6πt) e−πt2 3 hertz'te salınım göstermektedir(eğer t ölçüsü saniyeler ise) ve 0 a doğru hızla gitme eğilimdedir. ( bu denklem içinde saniye faktörü bir zarf fonksiyonu ve bir kısa vuruş içinde sürekli sinüzoidal şekillerdir. Bunun genel formu bir Gaussian fonksiyondur). Bu fonksiyon özel seçilmiş idi varolan bir gerçek Fourier dönüşümü için kolayca çizilebilir.İlk görüntü bu grafı içerir. hesaplamak için sırayla e−2πi(3t)f(t) integrali olmalıdır.İkinci görüntü bu fonksiyonun gerçel ve sanal kısımlarını gösterir.İntegrand'ın gerçel kısmı hemen hemen her zaman pozitif, çünkü eğer f(t) negatif ise, e−2πi(3t) nin gerçek kısmı da negatiftir. Çünkü bu aynı kesirde salınıyorsa eğer f(t) pozitif ise, böylece e−2πi(3t) nin gerçel kısmıdır.Sonuç olarak eğer integrandın gerçek kısım integrali ise bir göreceli büyük sayı alıyorsunuz(0.5 durumu içinde). Diğer taraftan,eğer bir frekans ölçüsü için deniyorsanız bu mevcut değildir, da gördüğümüz durumu içindeki gibi yeterince salınan integrand gibi integral çok küçüktür.Genel durum bundan bir parça daha karışık olabilir ,ama bu ruh içinde bir tek frekansın o kadar çok ölçüsü Fourier dönüşümü ve bir fonksiyon f(t) içinde mevcuttur

Temel özellikler

Fourier dönüşümünün temel özellikleri aşağıdadır: Pinsky 2002.

Doğrusallık
Herhangi karmaşık sayılar a ve b için, eğer h(x) = af(x) + bg(x), ise
Öteleme
Herhangi gerçek sayı x0 için, eğer ise
Modülasyon
Herhangi gerçek sayı ξ0 için eğer ise
Ölçekleme
bir sıfır-dışı gerçek sayılar a için, eğer h(x) = f(ax), ise      Durum a = −1 zaman-ters özellik için yer alır, bu durum: eğer h(x) = f(−x), ise
Birleşim
Eğer then
Özel olarak, eğer f gerçek, ve tek gerçeklik durumu var ise , şöyleki, bir Hermisyen fonksiyondur.
Ve eğer f saf sanal, ise
Integrasyon
Yerine koyma tanımı içinde, elde edilen

İşte böyle, başlangıç noktası içinde Fourier dönüşümünün evrimi () tüm domenin üzerinde tüm f in integralinin eşitidir .

Önemli Fourier dönüşümlerinin tabloları

Aşağıdaki tablolar, bir kapalı bir şekilde Fourier dönüşümleri kaydedebilir.f(x), g(x) ve h(x) fonksiyonlar için burada ile Fourier dönüşümü, sırasıyla , ve ile ifade edilir. Sadece en yaygın üç kural dahildir. Bu, bu giriş 105 Fourier Fourier dönüşümü ile ve ters olarak düşünülebilir bir fonksiyonun ve orijinal fonksiyonunun dönüşümü arasında bir ilişki veren fark için yararlı olabilir.

Fonksiyonel ilişkiler

Bu tabloda Fourier dönüşümleri bulunabilir Erdélyi (1954) veya Kammler (2000, appendix).

Fonksiyon Fourier dönüşümü
birim, sıradan frekans
Fourier dönüşümü
birim, açısal frekans
Fourier dönüşümü
birim-olmayan, açısal frekans
Açıklamalar



Tanım
101 Doğrusallık
102 Zaman domeni içinde kayma
103 Frekans domeni içinde kayma, 102'nin çifti
104 zaman domeninde ölçekleme. Eğer is büyük, ise 0 çevresinde yoğunlaşmıştır ve yayılır ve düzleşir.
105 ikilik.Burada Fourier dönüşümü sütunu olarak aynı yöntem kullanılarak hesaplanması gerekmektedir.

ve veya veya 'ın "yapay" değişkenleri değiştirme sonuçları.

106
107 Bu 106'nın çiftidir
108 gösterimi ve 'in evrişimidir— bu kural evrişim teoremidir
109 Bu 108'in çiftidir
110 için saf gerçek Hermisyen simetridir. karmaşık eşleniklerine ayrılır.
111 için bir saf gerçek çift fonksiyon , ve saf gerçek çift fonksiyondur.
112 için bir saf gerçek tek fonksiyon , ve saf sanal tek fonksiyonlar.
113 Karmaşık eşlenik, 110'un genellemesi

Kare-integrallenebilir fonksiyonlar

bu tablo içinde Fourier dönüşümleri Campbell & Foster 1948 içinde bulunabilir, Erdélyi 1954, veya Kammler 2000 in eki.

Fonksiyon Fourier dönüşümü
birim, sıradan frekans
Fourier dönüşümü
birim, açısal frekans
Fourier dönüşümü
birim-olmayan, açısal frekans
Açıklamalar



201 dörtgen uyarı ve normalleştirilmiş sinc fonksiyon, burada sinc(x) = sin(πx)/(πx) olarak tanımlanır
202 kural 201'in çifti dörtgen fonksiyon bir ideal alçak-geçiren filtredir, ve sinc fonksiyon gibi bir filtrenin nedensel-olmayan uyarı yanıtıdır.sinc fonksiyon burada sinc(x) = sin(πx)/(πx) olarak tanımlanır
203 tri(x) fonksiyon üçgen fonksiyondur
204 kural 203'ün ikilisi.
205 u(x) fonksiyonu Heaviside birim basamak fonksiyon ve a>0.
206 Bu üniter Fourier dönüşümleri için, Gauss fonksiyonu exp(−αx2), kendi Fourier αnın bazı seçimleri için dönüşüm olduğunu gösterir. Bu İntegrallenebilir olması için biz Re(α)>0 olmalıdır.
207 a>0 için. Bu, bir bozunmuş üstel fonksiyonun Fourier dönüşümü bir Lorentzyen fonksiyondur.
208 Hiperbolik sekant Fourier dönüşümünün kendisidir
209

 


 


 

Hermit polinomudur. Eğer a = 1 ise Gauss-Hermit fonksiyonları Fourier dönüşüm işlemcisinin özfonksiyonudur.Bir türev için, bakınız Hermit polinomu. Formül n = 0 için 206'ya indirgenir.

Dağılımlar

Fourier dönüşümleri bu tablo (Erdélyi 1954) içinde bulunabilir veya Kammler 2000 in eki.

Fonksiyon Fourier dönüşümü
birim, sıradan frekans
Fourier dönüşümü
birim, açısal frekans
Fourier dönüşümü
birim-olmayan, açısal frekans
Açıklamalar



301 δ(ξ) dağılımı Dirac delta fonksiyonu'nu ifade eder.
302 301'in kural ikizi.
303 Bunu 103 ve 301'den izleyin
304 101 ve 303 kuralından aşağıda Euler formülü kullanılıyor:

305 101 ve 303 kuralından aşağıda

kullanılıyor

306
307
308 Burada, n bir doğal sayılar sicimi Dirac delta fonksiyonunun türevinin n-inci dağılımıdır. Bu kural 107 ve 301 kuralından izlenir.Bu 101 ile kombine ediliyor,tüm polinomlar dönüştürülbilir.
309 Burada sgn(ξ) işaret fonksiyonudur. Unutmadan 1/x bir dağılım değildir.Bu fonksiyonların üyelerini test ediyor ise Cauchy temel değeri kullanmak için gereklidir.Bu kural Hilbert dönüşümüçalışmalarında kullanılıyor
310

1/xn homojen dağılım ve dağılımsal türev ile tanımlanır
311 Bu formül 0 > α > −1 için değerlidir.α > 0 için başlangıçtan ortaya çıkan bazı tekil terimler bu 318 türevi ile bulunabilir. Eğer Re α > −1,ise bir yerel integrallenebilir fonksiyondur, ve gibi bir katkılı dağılım.Fonksiyon katkılı dağılımın uzayına sağ yarı düzlemden bir holomorfik fonksiyondur. Bu bir katkılı dağılıma bir benzersiz meromorfik uzantı kabul ediliyor , ayrıca için α ≠ −2, −4, ... ile ifade edilir (bakınız homojen dağılım.)
312 309 kuralının ikizidir. Ve yine Cauchy temel değeri olarak düşünüldüğünde gerekli olan Fourier dönüşümüdür,.
313 u(x) fonksiyonu Heaviside birim basamak fonksiyonudur; 101, 301, ve 312 kurallarından bunu izleyin .
314 Bu fonksiyon Dirac comb fonksiyonu olanarak bilinir. Bu ,dağılımlar ile birlikte olarak aslında 302 ve 102 den elde edilebilir sonuçtur
315 J0(x) fonksiyonu sıfırıncı dereceden birinci türün Bessel fonksiyonudur
316 Bu 315'in genellemesidir.Fonksiyon Jn(x) n-inci dereceden Besselbirinci türün Bessel fonksiyonudur.Fonksiyon Tn(x) birinci türün Chebyshev polinomudur
317 Euler–Mascheroni sabitidir.
318 Bu formül 1 > α > 0 için değerdir. Yüksek üsteller için türev formülüne kullanılan diferansiyasyondur.u Heaviside fonksiyonudur.

İki-boyutlu fonksiyonlar

Fonksiyon Fourier dönüşümü
birim, sıradan frekans
Fourier dönüşümü
birim, açısal frekans
Fourier dönüşümü
birim-olmayan, açısal frekans
400



401
402
Açıklamalar

400 için: Değişkenler ξx, ξy, ωx, ωy, νx ve νy gerçek sayılardır. Integraller tüm düzlem üzerinde alınır.

401 için: Her iki fonksiyon birim hacmine sahip olmayabilen Gauss vardır.

402 için: Fonksiyon circ(r)=1 0≤r≤1 ile tanımlanır, ve 0 diğerleridir. Bu Airy dağılımıdır, ve J1 bağıntısı kullanılır (ilk tür'ün derece 1 Bessel fonksiyon). Stein & Weiss 1971, Thm. IV.3.3

Genel n-boyutlu fonksiyonlar için formüller

Fonksiyon Fourier dönüşümü
birim, sıradan frekans
Fourier dönüşümü
birim, açısal frekans
Fourier dönüşümü
birim olmayan,açısal frekans
500



501


502
503
504
Açıklamalar

501 için: Fonksiyon χ[0, 1] aralığının gösterge işlevi [0, 1].Fonksiyonu Γ(x) gama fonksiyonudur. Jn/2 + δ fonksiyonu için n/2 + δ ile, birinci tür bir Bessel işlevidir.n = 2 alınması ve δ = 0 402 üretir.Stein & Weiss 1971, Thm. 4.15

502 için: Riesz potansiyeline bakınız. Formül Analitik devamlılığı ile tüm α ≠ −n, −n − 1, … için tutar, ama sonra fonksiyonu ve onun Fourier dönüşümlerinin uygun düzenlilestirmeye katkılı dağılımları olarak anlaşılması gerekir - formül aynı zamanda tüm α ≠-n,-n için de geçerlidir. Homojen dağılıma bakın.

503 için: Bu, 0 ortalama ile 1 normalize bir çok değişkenli normal dağılım için formül Bold değişkenler vektörler ve matrislerdir.Anılan sayfa ifadenin ardından, and

504 için: Burada .BakınızStein & Weiss 1971, s. 6

Ayrıca bakınız

Kaynakça

Dış bağlantılar

This article is issued from Vikipedi - version of the 10/15/2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.