Ernst denklemi
Ernst denklemi, Matematik'te Doğrusal-Olmayan bir Kısmi Türevsel Denklem'dir.
Adı
Ünlü fizikçi Frederick J. Ernst[1] tarafından bulunmuş olduğundan, "Ernst denklemi" olarak adlandırılmıştır.
Ernst denklemi
Sağ tarafında Birinci dereceden kısmî türevler içeren ve doğrusal olmayan terimleri olan bir denklemdir. Çözümü aranan u karmaşık fonksiyonunun gerçel kısmı R(u), denklemin sol tarafındaki İkinci dereceden kısmî türevlerin çarpımı halinde belirdiğinden, denklemin her iki tarafı da doğrusal-olmayan (non-linear) terimler ihtivâ etmektedir. Denklem aşağıdaki şekilde verilmektedir:[2]
Kullanım amacı
Einstein alan denklemlerinin noksansız çözümlerini elde etmek için kullanılan doğrusal olmayan bir kısmi türevsel denklemdir.
Bibliyografya
- Zwillinger, Daniel (1989), Handbook of differential equations, Boston, MA: Academic Press, ISBN 978-0-12-784390-2
İlgili yayınlar
Journal of Mathematical Physics mecmuasında:
- 1971 Frederick J. Ernst, Exterior-Algebraic Derivation of Einstein Field Equations Employing a Generalized Basis
- 1974 Frederick J. Ernst, Complex potential formulation of the axially symmetric gravitational field problem
- 1974 Frederick J. Ernst, Weyl conform tensor for stationary gravitational fields
- 1975 Frederick J. Ernst, Black holes in a magnetic universe
- 1975 Frederick J. Ernst, Erratum: Complex potential formulation of the axially symmetric gravitational field problem
- 1975 John E. Economou & Frederick J. Ernst, Weyl conform tensor of =2 Tomimatsu–Sato spinning mass gravitational field
- 1976 Frederick J. Ernst & Walter J. Wild, Kerr black holes in a magnetic universe
- 1976 Frederick J. Ernst, New representation of the Tomimatsu–Sato solution
- 1976 Frederick J. Ernst, Removal of the nodal singularity of the C-metric
- 1977 Frederick J. Ernst, A new family of solutions of the Einstein field equations
- 1978 Frederick J. Ernst, Coping with different languages in the null tetrad formulation of general relativity
- 1978 Frederick J. Ernst & I. Hauser, Field equations and integrability conditions for special type N twisting gravitational fields
- 1978 Frederick J. Ernst, Generalized C-metric
- 1978 Isidore Hauser & Frederick J. Ernst, On the generation of new solutions of the Einstein–Maxwell field equations
- 1979 I. Hauser & Frederick J. Ernst, SU(2,1) generation of electrovacs from Minkowski space
- Erratum: 1979 Coping with different languages in the null tetrad formulation of general relativity
- Erratum: 1979 Generalized C metric
- 1980 Isidore Hauser & Frederick J. Ernst, A homogeneous Hilbert problem for the Kinnersley–Chitre transformations of electrovac space-times
- 1980 Isidore Hauser & Frederick J. Ernst, A homogeneous Hilbert problem for the Kinnersley–Chitre transformations
- 1981 Isidore Hauser & Frederick J. Ernst, Proof of a Geroch conjecture
- 1982 Dong-sheng Guo & Frederick J. Ernst, Electrovac generalization of Neugebauer's N = 2 solution of the Einstein vacuum field equations
- 1983 Y. Chen, Dong-sheng Guo & Frederick J. Ernst, Charged spinning mass field involving rational functions
- 1983 Cornelius Hoenselares & Frederick J. Ernst, Remarks on the Tomimatsu–Sato metrics
- 1987 Frederick J. Ernst, Alberto Garcia D & Isidore Hauser, Colliding gravitational plane waves with noncollinear polarization. I
- 1987 Frederick J. Ernst, Alberto Garcia D & Isidore Hauser, Colliding gravitational plane waves with noncollinear polarization. II
- 1988 Frederick J. Ernst, Alberto Garcia D & Isidore Hauser, Colliding gravitational plane waves with noncollinear polarization. III
- 1989 Wei Li & Frederick J. Ernst, A family of electrovac colliding wave solutions of Einstein's equations
- 1989 Isidore Hauser & Frederick J. Ernst, Initial value problem for colliding gravitational plane waves. I
- 1989 Isidore Hauser & Frederick J. Ernst, Initial value problem for colliding gravitational plane waves. II
- 1990 Isidore Hauser & Frederick J. Ernst, Initial value problem for colliding gravitational plane waves. III
- 1990 Cornelius Hoenselares & Frederick J. Ernst, Matching pp waves to the Kerr metric
- 1991 Wei Li, Isidore Hauser & Frederick J. Ernst, Colliding gravitational plane waves with noncollinear polarizations
- 1991 Wei Li, Isidore Hauser & Frederick J. Ernst, Colliding gravitational waves with Killing–Cauchy horizons
- 1991 Wei Li, Isidore Hauser & Frederick J. Ernst, Colliding wave solutions of the Einstein–Maxwell field equations
- 1991 Isidore Hauser & Frederick J. Ernst, Initial value problem for colliding gravitational plane waves. IV
- 1991 Wei Li, Isidore Hauser & Frederick J. Ernst, Nonimpulsive colliding gravitational waves with noncollinear polarizations
- 1993 Frederick J. Ernst & Isidore Hauser, On Gürses's symmetries of the Einstein equations
Kaynakça
- ↑ Lisans-Fizik, Princeton Üniversitesi ve Doktora-Fizik, University of Wisconsin–Madison (Doktora Tezi: The Wave Functional Description of Elementary Particles with Application to Nucleon Structure); 1964 - 1969: Yardımcı Doçent, 1969 - 1980: Doçent, 1980 - 1987: Professör, Hepsi Fizik-Illinois Institute of Technology; 1987'den sonra Matematik-Kısmî Türevsel Denklemler ve Fizik-Genel Görelilik Kuramı Profesörü, Clarkson University Potsdam, New York.
- ↑ Weisstein, Eric W, Ernst denklemi, MathWorld--A Wolfram Web.
This article is issued from Vikipedi - version of the 1/18/2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.