Kök hücre

Bir insan mezenşimal kök hücresi

Kök hücre,mitoz bölünmeyle özelleşmiş hücre tiplerine farklılaşabilen ve daha fazla kök hücre üretmek için kendini yenileme yeteneğine sahip olan, bütün çok hücreli canlıların doku ve organlarını oluşturan ana hücre türleridir.

Memelilerde kök hücrelerin iki yaygın tipi bulunur; blastokist evresinin iç tabakasından elde edilebilen embriyonik kök hücreler ve çeşitli dokularda bulunan yetişkin kök hücreleri.

Yetişkinlerdeki kök ve öncül (progenitör) hücreler vücudun onarımında görev alıp, erişkin dokuları yenileyebilme yetisine sahiplerdir. Gelişen bir embriyoda, kök hücreler özelleşmiş hücrelerin tümüne—ektoderm, mezoderm, endoderm—farklılaşabilirler (bkz. pluripotent hücreler denir) ve ayrıca kan, deri, sindirim organları gibi organların da yenilenmesini sürekli kılarlar.

İnsanlarda erişilebilir olan otolog erişkin kök hücre kaynakları şu şekildedir;

  1. Yağ (adipoz) doku (yağ hücreleri) ; liposakşın ile alınması ve saflaştırmaları gerekir.
  2. Kan, donörden alıcıya kan bağışına benzer şekilde kanın içinden geçtiği ve kök hücrelerin süzüldüğü "ferez" aracılığıyla saflaştırmayla yapılarak elde edilir.

Kök hücreler ayrıca doğumdan hemen sonra umbilikal kord kanından da elde edilebilir. Bütün kök hücre tiplerinde kendinden (otolog) elde en az riski taşır ve bankalarda saklanılarak sonrası için kullanılabilirler. Ancak son çalışmalar kanser tedavilerinde otolog kök hücre kullanımının riskli olabilceğini de göstermektedir.

Günümüzde yüksek oranda değişkenlik gösterebilen kök hücreler, kemik iliği nakilleri gibi tıbbi tedavilerde yaygın olarak kullanılmaktadır. Bunun için hücre kültür ortamlarında yapay olarak yetiştirilmeleri ve bu ortamlarda kullanılacak hücre tipine göre (kas, sinir vb.) farklılaştırılmaları gerekmektedir. Embriyonik hücre hatları ve otolog embriyonik kök hücreler ise; terapötik klonlamayla oluşturulmakta ve gelecekteki tedavi yöntemleri için umut oluşturmaktadır.[1] Kök hücreler hakkındaki araştırma ve bulgular 1960'larda Toronto Üniversitesindeki Ernest A. McCulloch ve James E. Till tarafından sağlanmıştır.[2][3]

Özellikleri

Bir hücrenin kök hücre olabilmesi için şu iki özelliği bulundurması gerekir:

Kendini-yenileme

Bir kök hücre populasyonun var olmasını sağlayan 2 mekanizma vardır:

  1. Asimetrik hücre bölünmesi (zorunlu asimetrik replikasyon) : bir kök hücre, kendiyle özdeş olan bir ana hücreye bölünür, diğer yavru hücre ise farklılaşır.
  2. Stokastik farklılaşma : bir kök hücre iki farklı oğul hücreye bölündüğünde, başka bir kök hücre mitoza gider ve ana hücreye özdeş iki kök hücreyi üretir.

Yetkinlik tanımlaması

Pluripotent kök hücreler, plesanta haricinde vücudun herhangi bir dokusuna dönüşebilirler. Sadece embriyonun erken evrelerinde morula olarak bilinen hücreler totipotenttir ve ekstraembriyonik yapıları ve vücuttaki tüm dokuları oluşturabilirler.

Yetkinlik kök hücrenin diğer hücrelere (farklı hücre tiplerine) farklılaşma potansiyelini belirtir.[4]

Besleyici fibroblast tabakasının üstünde yetiştirilen fare embriyonik kök hücre kolonileri

Tanımlama

Bir kök hücrenin pratikteki tanımı, işlevselliğidir; bir ömür boyu dokuları yenileme yeteneğine sahip hücreyi tanımlar. Örneğin, kemik iliği ya da hematopoetik kök hücreyi (HKH) tanımlayan bir deney, hücrenin naklini ve HKH'ler olmaksızın canlının korumasını belirleme yetisindedir. Bu durumda, bir kök hücre, yetkinliğini gösterir şekilde, yeni kan hücrelerini ve uzun vadede bağışıklık hücrelerini üretebilme yeteneğindedir. Ayrıca, nakil olan bir canlıdan, kök hücrelerin tekrar saflaştırılması mümkündür. Kök hücrelerin kendilerini-yenileme yeteneğini, HKH'ler olmaksızın yapılan nakiller göstermektedir.

Kök hücrelerin özellikleri, her bir hücrenin kendisini yenileme ve farklılaşma yeteneğine göre değerlendirildiği klonojenik test gibi in vivo yöntemlerle gösterilebilir [7][8]

Kök hücreler ayrıca, bulundurdukları özgül hücre yüzey belirteçlerine göre de saflaştırılabilirler. Ancak, in vivo hücre kültür ortamları, hücrenin aynı tutumu sergileyip sergilemeyeceğini belirsiz hale getiren şekilde hücrenin davranışını değiştirebilmektedir. Bu durumda, önerilen ergin hücre populasyonlarının gerçekten kök hücreler olup olmadığı konusunda önemli tartışmalar bulunmaktadır.

Embriyonik

Embriyonik kök hücre (EKH) hatları, embriyonun blaskokist ya da morulanın daha erken evrelerinde en iç hücre kümesinden köken alan epiblastlardan elde edilen kültürlerdir.[9]

Blastokist, 50-150 hücreden meydana gelen ve insan embriyosunun yaklaşık 4-5 günlük ilk evrelerindendir. EKH'ler, pluripotenttir ve üç ilkel tabakanın (ektoderm, mezoderm ve endoderm) tümüne de farklılaşabilir. Başka bir deyişle pluripotent hücreler; özgül bir hücre tipi için verilen yeterli ve gereken uyarı verildiğinde, 200'den fazla insan hücresinin tümünü oluşturabilir.

Pluripotent hücreler, embriyo-dışı membranlar ya da plasentanın oluşumuna katılmazlar. Endoderm, bütün akciğerleri ve sindirim biyotasını oluştururken, ektoderm sinir sistemi ve deriyi; mezoderm ise, kaslar, kemik, kan yani endoderm ve ektoderm arasındaki her şeyi birleştiren kısmı oluşturan katmanlardır.

Günümüze kadar olan neredeyse bütün araştırmalar, fare (mEKH) ve insan (iEKH) embriyonik kök hücrelerinden yapılmıştır. Bu hücrelerin her ikisi de, farklılaşmamış bir evrede kalmak için çok farklı çevrelere ihtiyaç duysalar da, gerekli kök hücre özelliklerini taşırlar.

Fare kök hücreleri (mEKH) iskelet görevi için hücrelerarası madde (matriks) gibi görev gören jelatine ve lösemi baskılayıcı faktör (LIF) gibi ajanlara ihtiyaç duymaktadır.[10] İnsan embriyonik kök hücreleri ise; fare embriyonik fibroblastlarından elde edilen besleyici bir tabakaya ve temel hücre büyüme faktörüne (bFGF ya da FGF-2) ihtiyaç duymaktadırlar.[11]

Genetik uygulama ya da en uygun kültür şartları olmaksızın;[12] embriyonik kök hücreler hızlıca farklılaşmaktadırlar.

Bir insan embriyonik kök hücresi, ayrıca bazı transkripsyon faktörleri ve hücre yüzey proteinleri olarak da tanımlanabilir.

Transkripsiyon faktörlerinden Oct-4, Nanog, ve Sox2, pluripotensinin devamını ve farklılaşmayı sağlayan genlerin baskılanmasını sağlayan, çekirdek düzenleyici ağdan meydana gelmektedir.[13]

Çoğunlukla insan embriyonik kök hücrelerini tanımlamak için kullanılan hücre yüzeyi antijenleri, glikolipidlerdir (evreye özgü embriyonik antijen 3 ve 4 ve keratan sülfat antijenleri Tra-1-60 ve Tra-1-81'dir.

Kök hücrelerin moleküler tanımlaması, bazı proteinleri ve devam eden araştırmaların bir konusuna karşılık gelmektedir denebilr.[14]

Günümüzde embriyonik kök hücrelerin kullanılarak yapıldığı onaylanmış herhangi bir tedavi bulunmamaktadır.

İlk insan denemesi Haziran 2009'da ABD Gıda ve İlaç Yönetimi tarafından uygulamaya kondu.[15] Ancak, bu insan deneyi, Atlanta'da 13 Ekim 2010 tarihindeki omurilik hasarlı kurbanlara kadar kabul edilmemiştir. 14 Kasım 2011'de deneyi uygulayan şirket, kök hücre tedavi uygulamalarına devam etmeyeceğini açıklamıştır.[16]

Pluripotent olan embriyonik kök hücreler, doğru farklılaşma için özgül sinyallere ihtiyaç duymaktadırlar; eğer bir vücuttan diğerine doğrudan verilirlerse, bu kök hücreler teratomaya da yol açabilen birçok farklı hücreye farklılaşabilirler.

Teorikte nakil reddini engellemede kullanılması mümkün olan ve uygun hücrelere farklılaşma yeteneğindeki EKH'ler, araştırmacıların hala yüzleşmekte olduğu bazı engelleri de bulundururlar.[17]

Günümüzde bazı uluslar, EKH'lerin araştırma ya da yeni EKH üretme konuları üzerine moratoryumları bulunmaktadır.

Embriyonik kök hücreler, sınırsız genişleme ve pluripotensi yeteneklerinin birleşimlerinden dolayı, teorik olarak yenileyici tıp ve hastalık sonrası doku onarımı için olası kaynaklardır.

Henüz farklılaşmamış olan bu hücreler sınırsız bölünebilme ve kendini yenileme, organ ve dokulara dönüşebilme yeteneğine sahiptir. Bu özellikleri bakımından kök hücreler kanser, sinir sistemi hastalıkları (Alzheimer) ve hasarları, metabolik hastalıklar (diyabet), organ yetmezlikleri, romatizmal hastalıklar, kalp hastalıkları, kemik hastalıkları ve daha birçok alanda kullanıma sahiptirler.

Günümüzde bu hastalıkların bazılarının tedavisinde organ veya doku nakilleri yapılmaktadır. Ancak, organ veya doku nakli gerektiren hastaların çokluğu, uygun organ ve dokunun her zaman bulunamaması gibi sorunlarla sürekli karşılaşılmaktadır. Bilim ve teknolojideki son gelişmeler doğrultusunda Kök hücrelerin bu alanda kullanılması gündeme gelmiştir.

Fetal

Fetüslerin organlarında bulunan birincil kök hücreler fetal kök hücreler olarak adlandırılır.[18]

Yetişkin

Yetişkin kök hücresi, somatik (vücut) kök hücreleri ve üreme hattı (germ) kök hücreleri olarak da bilinen, yetişkinler kadar çocuklarda da bulunan hücrelerdir.[19] Pluripotent yetişkin kök hücreler seyrek ve umbilical kord kanı gibi dokuların bazılarında çok küçük miktarda bulunurlar.[20] Kemik iliği, omurilik yaralanmaları [21], karaciğer sirozu [22], knik uzuv iskemisi [23], son aşamadaki kalp yetmezliği [24] gibi hastalıkların tedavilerde kullanılan yetişkin kök hücrelerin bulunduğu zengin kaynaklardan biridir [25]. Kemik iliği kök hücrelerinin miktarı, yaşlanmayla azalır, ayrıca aynı yaş grubundaki üreyebilir dişilerde erkeklere kıyasla daha azdır [26]. Günümüze kadar olan yetişkin kök hücre araştırmalarının büyük kısmı, hücrelerin bölünme veya süresiz olarak kendini yenileme ve farklılaşma eğilimlerininin sınırlarını belirlemek üzerine olmuştur[27].

Farede, pluripotent kök hücreler doğrudan yetişkin fibroblast kültürlerinden elde edilebilirler. Ne yazık ki, birçok fare, kök hücreden yapılan organlarla fazla uzun yaşayamamıştır.[28]

Çoğu yetişkin kök hücresi,soy-kısıtlı yani multipotentdir ve genellikle kendi doku kökenlerine aittir (örn. mezenşimal kök hücre, adipoz-kökenli kök hücre, endoteliyal kök hücre, diş özü kök hücresi, vb. gibi).[29][30] Yetişkin kök hücre tedavileri, uzun zamandır lösemi ve ilişkili olan kan/kemik iliği kanserlerinde kemik iliği nakli uygulamasıyla başarıyla kullanılmaktadır.[31] Yetişkin kök hücreler ayrıca yaralanmış atlarda tendon ve ligamentlerin tedavisinde de kullanılmaktadır.[32] Erişkin kök hücrelerin araştırmalarda ve tedavilerdeki kullanımları, embriyonik kök hücrelerde olduğu gibi tartışmalı değildir, çünkü yetişkin kök hücrelerin eldesi için bir embriyonun yok edilmesi gerekmez. Ayrıca, uygun alıcıdan (otograftdan) erişkin kök hücrelerin elde edildiği koşullarda, doku reddi riski neredeyse yoktur. Bu nedenle, erişkin kök hücre araştırmaları için daha fazla ödeneğin ayrılması gerekiyor gibi görünmektedir[33].

Yetişkin mezenşimal kök hücreler için son derece zengin başka bir kaynak da, alt (mandibular) üçüncü azı dişinin özüdür.[34] Bu kök hücreler, sonunda diş minesi, dentin, peridontal bağ, kan damarları, diş özü, sinir dokuları ve en az 29 farklı organı oluştururlar. 8-10 yaşlarında, kemikleşmeden ve hastalanmadan önce elde var olan bu büyük koleksiyon sayesinde belki de kişiye özgü işlemler, araştırmalar ve şimdiki ve gelecek tedaviler şekillendirilecektir.

Bu kök hücrelerin ayrıca hepatositleri de üretme yeteneğinde oldukları bulunmuştur.[35]

Yağ dokusu kök hücrenin en bol bulunduğu ve en kolay elde edildiği kaynaktır. Time dergisi 2011 yılında yağ dokusundan kök hücre elde edilmesini yılın en önemli 50 icadından birisi olarak seçmiştir. Özellikle estetik cerrahide yağ dokusu kökenli kök hücre çok kullanılsa da giderek diğer alanlara yayılma potansiyeline sahiptir. [36]

Amniyotik

Multipotent kök hücreler ayrıca amniyon sıvısında da bulunur. Bu kök hücreler oldukça etkindirler ve besleyici ortam olmaksızın oldukça genişleyebilirler ve ayrıca tümorojenik değildirler. Amniyotik kök hücreler multipotenttirler ve adipojenik, osteojenik, miyojenik, endoteliyal, hepatik ve ayrıca nöronal hatlardaki hücrelere farklılaşabilirler.[37]

Dünya çapında bütün üniversite ve araştırma merkezleri, amniyotik sıvıyı amniyotik kök hücrelerinin bütün niteliklerini öğrenmek üzere araştırmaktadırlar. Ve Anthony Atala gibi araştırmacılar bu konuda oldukça iyi veriler elde etmiştir[38][39] and Giuseppe Simoni [40][41][42]. Amniyotik sıvıdan elde edilen kök hücrelerin kullanımıyla, insan embriyosundan elde edilen kök hücrelerdeki gibi sorunların üstesinden gelinecek gibi görünmektedir.

Roma Katolik Kilisesi, embriyonik kök hücrelerin deneylerde kullanımını yasaklarken, Vatikan gazetesi amniyotik kök hücreler için geleceğin tıbbı olarak başlık vermiştir [43] . Donörlerden ya da kendi kullanmak isteyenlerden amniyotik kök hücreleri biriktirmek mümkündür; bu nedenle dünya genelinde kurulan ve ortaklaşa çalışan amniyotik kök hücre bankaları bulunmaktadır [44][45][46][47][48][49]

Uyarılmış pluripotent

İnsan embriyonik kök hücreleri
A: Henüz farklılaşmamış hücre kolonileri
B: Sinir hücresi

Bu hücreler erişkin kök hücreleri ya da normal yetişkin hücreleri (eptirel vb. gibi) değildir, yeniden programlanmış ve pluripotent yetisi kazandırılmışlardır. Protein transripsiyon faktörleri ile genetik programlama kullanılarak, insan derisinden köken alan pluripotent kök hücreler embriyonik kök hücrelere eşdeğer şekilde tanımlanırlar.[50][51][52]

Kyoto Üniversitesi'ndeki Shinya Yamanaka ve arkadaşları transkripsiyon faktörleri Oct3/4, Sox2, c-Myc, ve Klf4'ü kullanarak [50] insan yüzünden aldıkları hücrelerde deneylerini gerçekleştirmişlerdir. Wisconsin–Madison Üniversitesinden Junying Yu, James Thomson ve arkadaşları farklı bir grup (Oct4, Sox2, Nanog ve Lin28) [50] transkripsiyon faktörü kullanarak insan sünnet derisinden aldıkları hücrelerle çalışmalarını yapmışlardır. Bu başarılı deneylerin sonucu olarak, ilk klon koyun Dolly'nin kopyalanmasına yardımcı olan Ian Wilmut, somatik hücre çekirdeği transferininden vazgeçeceğini açıklamıştır [53] Bu uyarılmış pluripotent kök hücrelerin eldesi için, yeni bir yolla donmuş olan kan örneklerinin kaynak olarak kullanılması mümkündür [54].

Hücre hattı

Kendini-yenilemeyi sağlamak için kök hücreler iki farklı hücre bölünmesine gider. (Bkz: Hücre bölünmesi ve farklılaşması çizimi)

Kök hücrenin bölünmesi ve farklılaşması. A: kök hücre; B: öncül hücre; C: farklılaşmış hücre; 1: simetrik kök hücre bölünmesi; 2: asimetrik kök hücre bölünmesi; 3: öncül bölünme; 4: son farklılaşma

Simetrik bölünme, her ikisi de kök hücre özelliklerini taşıyan iki özdeş evlat hücreye bölünmeyi sağlarken, asimetrik bölünme; sadece bir kök hücre ve kendini-yenileme yeteneği kısıtlı olan bir öncül hücrenin oluşumunu sağlar. Bu öncül hücreler, farklılaşmış olgun hücreye dönüşmeden önce birkaç bölünme döngüsüne girebilir. Simetrik ve asimetrik hücre bölünmesi arasında moleküler ayrımın yapılması; kardeş hücrelerin bile farklılaşmış hücre yüzey proteinlerini (örn. reseptörler) taşımasından dolayı mümkündür [55]. Başka bir farklı görüş de, kök hücrenin kendi çevresel özgül nişlerinde farklılaşmadan kaldığıdır. Kök hücreler kendi nişlerinden ayrıldıklarında ya da burdan aldıkları sinyalleri kaybettiklerinde farklılaşırlar. Drosophila sineğinde yapılan çalışmalar, "dekapentaplejik sinyalleri"n ve germaryum kök hücrelerini farklılaşmaktan koruyan yapışma noktalarının (adherens junctions) varlığını göstermiştir[56][57].

Yeniden programlanmış hücrelerin embriyonik-kök hücre gibi davranması için sinyaller de günümüzde ayrıca bulunmuştur. Bu sinyal yolakları, c-Myc gibi onkogenler de bulunduruan bazı transkripsiyon faktörlerini kapsamaktadır. İlk çalışmalar, fare hücrelerinin bu anti-farklılaşma sinyalleri kombinasyonlarıyla farklılaşmayı geri döndürebildiklerini ve yetişkin hücrelerin tekrar pluripotent hale getirilebileceklerini göstermektedir [28] Ancak, bu hücrelerin geri dönüştürmesinde yer alan süreçte onkogenlerin de bulunması, bu tarz çalışmaların tedavideki kullanımlarını engelleyecek gibi gözükmektedir.

Hücresel farklılaşmanın ve bu hattın bütünlüğünün doğasındaki uç çekicilik, kombine edilmiş transkripsiyon faktörlerinin diğer somatik hücrelerin de kaderlerini etkileyecebileğini düşündürttü ve yakınlarda bazı araştırmacılar nöral-hatt-özgü olan üç transkripsiyon faktörünün, fare fibroblastları (deri hücreleri) doğrudan işlevsel nöronlara dönüştürebileceğini gösterdi.[58]

Tedavide kullanım

Ayrıca bakınız

Dış bağlantılar

Kaynaklar

  1. Tuch BE (2006). "Stem cells—a clinical update". Australian Family Physician 35 (9): 719–21. PMID 16969445.
  2. Becker AJ, McCulloch EA, Till JE (1963). "Cytological demonstration of the clonal nature of spleen colonies derived from transplanted mouse marrow cells". Nature 197 (4866): 452–4. DOI:10.1038/197452a0. PMID 13970094.
  3. Siminovitch L, McCulloch EA, Till JE (1963). "The distribution of colony-forming cells among spleen colonies". Journal of Cellular and Comparative Physiology 62 (3): 327–36. DOI:10.1002/jcp.1030620313. PMID 14086156.
  4. 1 2 3 4 5 6 Hans R. Schöler (2007). "The Potential of Stem Cells: An Inventory". Nikolaus Knoepffler, Dagmar Schipanski, and Stefan Lorenz Sorgner. Humanbiotechnology as Social Challenge. Ashgate Publishing, Ltd. s. 28. ISBN 978-0-7546-5755-2.
  5. Mitalipov S, Wolf D (2009). "Totipotency, pluripotency and nuclear reprogramming". Adv. Biochem. Eng. Biotechnol.. Advances in Biochemical Engineering/Biotechnology 114: 185–99. DOI:10.1007/10_2008_45. ISBN 978-3-540-88805-5. PMC 2752493. PMID 19343304. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2752493.
  6. Ulloa-Montoya F, Verfaillie CM, Hu WS (Jul 2005). "Culture systems for pluripotent stem cells". J Biosci Bioeng. 100 (1): 12–27. DOI:10.1263/jbb.100.12. PMID 16233846.
  7. Friedenstein AJ, Deriglasova UF, Kulagina NN, Panasuk AF, Rudakowa SF, Luria EA, Ruadkow IA (1974). "Precursors for fibroblasts in different populations of hematopoietic cells as detected by the in vitro colony assay method". Experimental Hematology 2 (2): 83–92. ISSN 0301-472X. PMID 4455512.
  8. Friedenstein AJ, Gorskaja JF, Kulagina NN (1976). "Fibroblast precursors in normal and irradiated mouse hematopoietic organs". Experimental Hematology 4 (5): 267–74. PMID 976387.
  9. "New Stem-Cell Procedure Doesn't Harm Embryos, Company Claims". Fox News. 2006-08-24. http://www.foxnews.com/story/0,2933,210078,00.html. Erişim tarihi: 2010-02-28.
  10. "Mouse Embryonic Stem (ES) Cell Culture-Current Protocols in Molecular Biology". https://catalog.invitrogen.com/index.cfm?fuseaction=iProtocol.unitSectionTree&treeNodeID=9E662600C6C10276D8E040E99EA33BB0.
  11. "Culture of Human Embryonic Stem Cells (hESC)". 15 Mayıs 2012 tarihinde kaynağından arşivlendi. http://web.archive.org/web/20120515114238/http://stemcells.nih.gov/research/NIHresearch/scunit/culture.asp. Erişim tarihi: 2010-03-07.
  12. Chambers I, Colby D, Robertson M ve diğ. (2003). "Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells". Cell 113 (5): 643–55. DOI:10.1016/S0092-8674(03)00392-1. PMID 12787505.
  13. Boyer LA, Lee TI, Cole MF ve diğ. (2005). "Core transcriptional regulatory circuitry in human embryonic stem cells". Cell 122 (6): 947–56. DOI:10.1016/j.cell.2005.08.020. PMC 3006442. PMID 16153702. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3006442.
  14. Adewumi O, Aflatoonian B, Ahrlund-Richter L ve diğ. (2007). "Characterization of human embryonic stem cell lines by the International Stem Cell Initiative". Nat. Biotechnol 25 (7): 803–16. DOI:10.1038/nbt1318. PMID 17572666.
  15. Ron Winslow (2009). "First Embryonic Stem-Cell Trial Gets Approval from the FDA". The Wall Street Journal. 23 January 2009.
  16. "Embryonic Stem Cell Therapy At Risk? Geron Ends Clinical Trial". ScienceDebate.com. 22 Ağustos 2014 tarihinde kaynağından arşivlendi. http://web.archive.org/web/20140822055210/http://www.sciencedebate.com/science-blog/embryonic-stem-cell-therapy-risk-geron-ends-clinical-trial. Erişim tarihi: 2011-12-11.
  17. Wu DC, Boyd AS, Wood KJ (2007). "Embryonic stem cell transplantation: potential applicability in cell replacement therapy and regenerative medicine". Front Biosci 12 (8–12). DOI:10.2741/2407. PMID 17485394.
  18. Ariff Bongso; Eng Hin Lee (2005). "Stem cells: their definition, classification and sources". Ariff Bongso; Eng Hin Lee. Stem Cells: From Benchtop to Bedside. World Scientific. s. 5. OCLC 443407924.
  19. Jiang Y, Jahagirdar BN, Reinhardt RL ve diğ. (2002). "Pluripotency of mesenchymal stem cells derived from adult marrow". Nature 418 (6893): 41–9. DOI:10.1038/nature00870. PMID 12077603.
  20. Ratajczak MZ, Machalinski B, Wojakowski W, Ratajczak J, Kucia M (2007). "A hypothesis for an embryonic origin of pluripotent Oct-4(+) stem cells in adult bone marrow and other tissues". Leukemia 21 (5): 860–7. DOI:10.1038/sj.leu.2404630. PMID 17344915.
  21. William JB (2011). "Functional Recovery of Spinal Cord Injury Following Application of Intralesional Bone Marrow Mononuclear Cells Embedded in Polymer Scaffold - Two Year Follow-up in a Canine". 12 Şubat 2015 tarihinde kaynağından arşivlendi. http://web.archive.org/web/20150212212012/http://omicsonline.org/2157-7633/2157-7633-1-110.php.
  22. Terai S (2006). "Improved liver function in patients with liver cirrhosis after autologous bone marrow cell infusion therapy". 19 Nisan 2015 tarihinde kaynağından arşivlendi. http://web.archive.org/web/20150419103139/http://www.ncbi.nlm.nih.gov/pubmed/16778155.
  23. Subrammaniyan R (2011). "Application of autologous bone marrow mononuclear cells in six patients with advanced chronic critical limb ischemia as a result of diabetes: our experience". 12 Şubat 2015 tarihinde kaynağından arşivlendi. http://web.archive.org/web/20150212190718/http://www.ncbi.nlm.nih.gov/pubmed?term=Application%20of%20autologous%20bone%20marrow%20mononuclear%20cells%20in%20six%20patients%20with%20advanced%20chronic%20critical%20limb%20ischemia%20as%20a%20result%20of%20diabetes%3A%20our%20experience.
  24. Madhusankar N. "Use of Bone Marrow derived Stem Cells in Patients with Cardiovascular Disorders". 12 Şubat 2015 tarihinde kaynağından arşivlendi. http://web.archive.org/web/20150212190401/http://www.pubstemcell.com/monthly/003010700010.htm.
  25. Narasipura SD (2008). "P-Selectin coated microtube for enrichment of CD34+ hematopoietic stem and progenitor cells from human bone marrow". 12 Şubat 2015 tarihinde kaynağından arşivlendi. http://web.archive.org/web/20150212190747/http://www.ncbi.nlm.nih.gov/pubmed/18024531.
  26. Dedeepiya VD (2012). "Index of CD34+ Cells and Mononuclear Cells in the Bone Marrow of Spinal Cord Injury Patients of Different Age Groups: A Comparative Analysis". PMID 22830032. 13 Şubat 2015 tarihinde kaynağından arşivlendi. http://web.archive.org/web/20150213094801/http://www.ncbi.nlm.nih.gov/pubmed/22830032.
  27. Gardner RL (2002). "Stem cells: potency, plasticity and public perception". Journal of Anatomy 200 (3): 277–82. DOI:10.1046/.1469-7580.2002.00029.x. PMC 1570679. PMID 12033732. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1570679.
  28. 1 2 Takahashi K, Yamanaka S (2006). "Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors". Cell 126 (4): 663–76. DOI:10.1016/j.cell.2006.07.024. PMID 16904174.
  29. Barrilleaux B, Phinney DG, Prockop DJ, O'Connor KC (2006). "Review: ex vivo engineering of living tissues with adult stem cells". Tissue Eng 12 (11): 3007–19. DOI:10.1089/ten.2006.12.3007. PMID 17518617.
  30. Gimble JM, Katz AJ, Bunnell BA (2007). "Adipose-derived stem cells for regenerative medicine". Circ Res 100 (9): 1249–60. DOI:10.1161/01.RES.0000265074.83288.09. PMID 17495232.
  31. "Bone Marrow Transplant". 4 Kasım 2009 tarihinde kaynağından arşivlendi. http://web.archive.org/web/20091104065330/http://www.ucsfchildrenshospital.org:80/treatments/leukemia_treatment_options/index.html.
  32. Kane, Ed (2008-05-01). "Stem-cell therapy shows promise for horse soft-tissue injury, disease". DVM Newsmagazine. http://veterinarynews.dvm360.com/dvm/Equine+Medicine/Stem-cell-therapy-shows-promise-for-horse-soft-tis/ArticleStandard/Article/detail/515503. Erişim tarihi: 2008-06-12.
  33. "Stem Cell FAQ". US Department of Health and Human Services. 2004. 14 Nisan 2010 tarihinde kaynağından arşivlendi. http://web.archive.org/web/20100414105632/http://www.hhs.gov/news/press/2004pres/20040714b.html. Erişim tarihi: 2010-03-07.
  34. Huang GT, Gronthos S, Shi S (2009 Sep). "Mesenchymal stem cells derived from dental tissues vs. those from other sources: their biology and role in regenerative medicine". J Dent Res 88 (9): 792–806. DOI:10.1177/0022034509340867. PMC 2830488. PMID 19767575. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2830488.
  35. Ishkitiev N, Yaegaki K, Imai T, ve ark. (2012 Apr). "High-purity hepatic lineage differentiated from dental pulp stem cells in serum-free medium.". J Endod.. PMID 22414832.
  36. "Human adipose tissue is a source of multipotent stem cells". http://kokhucre.eu/kok-hucre-kaynagi-olarak-yag-dokusu.
  37. P. De Coppi, G Barstch, Anthony Atala (2007). "Isolation of amniotic stem cell lines with potential for therapy". Nature Biothecnology 25 (5): 100–106. DOI:10.1038/nbt1274. PMID 17206138.
  38. NewsHour with Jim Lehrer. "Online NewsHour: Update | Amniotic Fluid Yields Stem Cells | January 8, 2007". PBS. 22 Ocak 2014 tarihinde kaynağından arşivlendi. http://web.archive.org/web/20140122093313/http://www.pbs.org/newshour/bb/health/jan-june07/cell_01-08.html. Erişim tarihi: 2010-03-14.
  39. "Public : Stem Cell Briefings". ISSCR. 2008-03-21. 16 Ocak 2011 tarihinde kaynağından arşivlendi. http://web.archive.org/web/20110116040818/http://www.isscr.org:80/public/briefings/amniotic.htm. Erişim tarihi: 2010-03-14.
  40. "Diagnosis of fetal trisomy 21 in first trimester". Ncbi.nlm.nih.gov. 2012-05-24. 12 Mayıs 2013 tarihinde kaynağından arşivlendi. http://web.archive.org/web/20130512120526/http://www.ncbi.nlm.nih.gov/pubmed/6131275. Erişim tarihi: 2012-08-26.
  41. http://www.thelancet.com/search/results?searchTerm=simoni&fieldName=Authors&year=1983&volume=&page=&journalFromWhichSearchStarted=&sort=date&order=desc&collectionName=Medline
  42. "Biocell picks Massachusetts to house North American headquarters – Related Stories – BIO SmartBrief". Smartbrief.com. 21 Mayıs 2012 tarihinde kaynağından arşivlendi. http://web.archive.org/web/20120521175850/http://www.smartbrief.com/news/bio/storyDetails.jsp?issueid=10998D4A-47C0-451B-B35A-754969D7EC5A&copyid=876B286F-19F6-4013-95AC-9744F69B7AD2&brief=bio&sb_code=rss&&campaign=rss. Erişim tarihi: 2010-03-14.
  43. "Vatican newspaper calls new stem cell source 'future of medicine' :: Catholic News Agency (CNA)". Catholic News Agency. 2010-02-03. 21 Ekim 2013 tarihinde kaynağından arşivlendi. http://web.archive.org/web/20131021212744/http://www.catholicnewsagency.com/news/vatican_newspaper_calls_new_stem_cell_source_future_of_medicine/. Erişim tarihi: 2010-03-14.
  44. "European Biotech Company Biocell Center Opens First U.S. Facility for Preservation of Amniotic Stem Cells in Medford, Massachusetts". Reuters. 2009-10-22. http://www.reuters.com/article/pressRelease/idUS166682+22-Oct-2009+PRN20091022. Erişim tarihi: 2010-03-14.
  45. "Europe's Biocell Center opens Medford office – Daily Business Update". The Boston Globe. 2009-10-22. http://www.boston.com/business/ticker/2009/10/europes_biocell.html. Erişim tarihi: 2010-03-14.
  46. "The Ticker". BostonHerald.com. 2009-10-22. 21 Eylül 2012 tarihinde kaynağından arşivlendi. http://web.archive.org/web/20120921064743/http://www.bostonherald.com/business/general/view/20091022the_ticker. Erişim tarihi: 2010-03-14.
  47. "Biocell Center opens amniotic stem cell bank in Medford". Mass High Tech Business News. 2009-10-23. 5 Kasım 2012 tarihinde kaynağından arşivlendi. http://web.archive.org/web/20121105090625/http://www.masshightech.com/stories/2009/10/19/daily59-Biocell-Center-opens-amniotic-stem-cell-bank-in-Medford.html. Erişim tarihi: 2012-08-26.
  48. "News » World’s First Amniotic Stem Cell Bank Opens In Medford". wbur.org. 4 Nisan 2014 tarihinde kaynağından arşivlendi. http://web.archive.org/web/20140404162303/http://www.wbur.org/2009/10/22/stem-cell-bank. Erişim tarihi: 2010-03-14.
  49. "Biocell Center Corporation Partners with New England's Largest Community-Based Hospital Network to Offer a Unique... – MEDFORD, Mass., March 8 /PRNewswire/". Massachusetts: Prnewswire.com. 6 Eylül 2015 tarihinde kaynağından arşivlendi. http://web.archive.org/web/20150906004847/http://www.prnewswire.com/news-releases/biocell-center-corporation-partners-with-new-englands-largest-community-based-hospital-network-to-offer-a-unique-service-in-amniotic-fluid-stem-cell-preservation-86848157.html. Erişim tarihi: 2010-03-14.
  50. 1 2 3 "Making human embryonic stem cells". The Economist. 2007-11-22. http://www.economist.com/science/displaystory.cfm?story_id=10170972.
  51. Madeleine Brand, Joe Palca and Alex Cohen (2007-11-20). "Skin Cells Can Become Embryonic Stem Cells". National Public Radio. 18 Kasım 2015 tarihinde kaynağından arşivlendi. http://web.archive.org/web/20151118204038/http://www.npr.org/templates/story/story.php?storyId=16466265.
  52. "Breakthrough Set to Radically Change Stem Cell Debate". News Hour with Jim Lehrer. 2007-11-20. 22 Ocak 2014 tarihinde kaynağından arşivlendi. http://web.archive.org/web/20140122092539/http://www.pbs.org/newshour/bb/science/july-dec07/stemcells_11-20.html.
  53. "His inspiration comes from the research by Prof Shinya Yamanaka at Kyoto University, which suggests a way to create human embryo stem cells without the need for human eggs, which are in extremely short supply, and without the need to create and destroy human cloned embryos, which is bitterly opposed by the pro life movement."Roger Highfield (2007-11-16). "Dolly creator Prof Ian Wilmut shuns cloning". London: The Telegraph. http://www.telegraph.co.uk/science/science-news/3314696/Dolly-creator-Prof-Ian-Wilmut-shuns-cloning.html.
  54. http://www.newsdaily.com/stories/tre6604si-us-stemcells-frozen/
  55. Beckmann J, Scheitza S, Wernet P, Fischer JC, Giebel B (2007). "Asymmetric cell division within the human hematopoietic stem and progenitor cell compartment: identification of asymmetrically segregating proteins". Blood 109 (12): 5494–501. DOI:10.1182/blood-2006-11-055921. PMID 17332245.
  56. Xie T, Spradling A (1998). "decapentaplegic is essential for the maintenance and division of germline stem cells in the Drosophila ovary". Cell 94 (2): 251–60. DOI:10.1016/S0092-8674(00)81424-5. PMID 9695953.
  57. Song X, Zhu C, Doan C, Xie T (2002). "Germline stem cells anchored by adherens junctions in the Drosophila ovary niches". Science 296 (5574): 1855–7. DOI:10.1126/science.1069871. PMID 12052957.
  58. Vierbuchen T, Ostermeier A, Pang ZP, Kokubu Y, Südhof TC, Wernig M (2010-02-25). "Direct conversion of fibroblasts to functional neurons by defined factors". Nature 463 (7284): 1035–41. DOI:10.1038/nature08797. PMC 2829121. PMID 20107439. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2829121. Diğer özet.
This article is issued from Vikipedi - version of the 12/22/2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.