Standart Model
Parçacık fiziğinin standart modeli |
---|
{{{altyazu}}} |
Bileşenleri
|
Sınırları
|
Standart Model, gözlemlenen maddeyi oluşturan, şimdiye dek bulunmuş temel parçacıkları ve bunların etkileşmesinde önemli olan 3 temel kuvveti açıklayan kuramdır. SM olarak kısaltılır.
Sözü geçen 3 temel kuvvet: Elektromanyetik kuvvet, zayıf nükleer kuvvet (elektro-zayıf kuvvet) ve güçlü nükleer kuvvettir. SM'in en büyük başarısı şimdiye dek birçok kez sınanmış olmasına rağmen atom altı parçacıkların özellikleri ile aralarındaki etkileşmelerine ait gözlenebilir nicelikleri büyük hassaslıkta tahmin edebilmesidir. Bununla birlikte yapılan daha hassas deneyler ile SM'in öngördüğü değerler arasında farklar bulunmaktadır. Bunlara ek olarak SM'in temel birçok eksik tarafı vardır.
SM'nin içeriği
SM'e göre evren birbirinin kopyası gibi duran 3 tane aileden oluşmaktadır. Birinci aile etrafımızda gördüğümüz maddeyi oluşturmaktadır. İkinci ve üçüncü aileler birinci aileden daha ağırdırlar. Her ailede 2 kuark (yükleri 2e/3, -1e/3), 2 lepton (yükleri -1e, 0e) ve bunlarin anti parçacıkları vardır. Mesela '' parçacıkları 1. aileyi oluşturmaktadırlar. '' parçacıkları 2. aileyi oluşturmaktadırlar ve '' 3. aile olarak sınıflandırılır. 2. aile üyeleri 1. den ve aynı şekilde 3. aile de 2.den daha ağır olmalarıyla beraber, temel özellikleri aynıdır. Bu yüzden SM en basit haliyle bir aile için yazılır ve 3 aileli duruma genişletilir.
- SM parçacıkları ve etkileşimleri
Bu sınıflandırmada karşılaşılan bir küçük zorluk, farklı ailelerde aynı yerde olan kuarkların birbirlerine karışmalarıdır. Mesela d, s ve b birbirine karışırlar. Bu karışım matematiksel olarak 3x3 bir üniter matrisle ifade edilir. 2 aileli durum için ilk defa Nicola Cabibbo tarafından yazılan bu matris, 3 aileli duruma Makoto Kobayashi ve Toshihide Maskawa tarafından genelleştirdiği için onların isimlerinin baş harfleri ile anılır: CKM matrisi.
Yukarıda bahsi geçen bütün kuarklar ve leptonlar elektromanyetizma ve zayıf nükleer gücün birleşimi olan elektro-zayıf kuvvet ile etkileşirler. Bu kuvveti bozonları taşırlar. İlaveten, kuarkların sadece kendi aralarında etkileşmelerini sağlayan bir kuvvet daha vardır. Buna güçlü etkileşim denir; taşıyıcıları (gluon) lardır. SM bu iki kuvvetin etkilerini Kendiliğinden Simetri Kırılması (KSK) ile birlikte anlatır.
SM'in tamamlanması
Higgs bozonu
Standart Model temel olarak SU(3)xSU(2)xU(1) ayar gruplarına ait simetrileri içeren bir kuantum alan teorisidir. Bu simetri modelin en temel simetrilerinden birisidir ve parçacıklar kendi aralarında bu ayar simetrilerinin sonucu olarak etkileşmelere ya da yukarıdaki kuvvetleri alıp vermektedirler. Standart Modeli ifade eden denklem içerisine SM parçacıklarına ait kütle terimleri ayar simetrilerini kırmadan eklenememektedir. Fakat 1964 yılında üç farklı grup tarafından Robert Brout ve François Englert, Peter Higgs, ve Gerald Guralnik, C. Richard Hagen, ve Tom Kibble tarafından yayınlanan makaleler ile ayar alanlarının kuantumlarının yanında tüm madde alanlarına kütle kazandırabilecek ve 4 serbestlik derecesine sahip skaler ve daha sonra Higgs alanı adı verilen ekleme yapılmıştır.[1] Bu ekleme ile skaler Higgs alanı uygun bir potansiyel ile vakum beklenen değerinin 0'dan farklı bir yerde olması sağalanmıştır. Bu sayede 4 serbestlik derecesinden 3 adedi CERN tarafından daha önceki deneylerde keşfedilmiş olan W+/- Z0 bozonlarına yapışarak kütle kazanmalarına yardımcı olmaktadır. Geriye kalan bir serbestlik derecesi SM'in bir öngörüsü olarak kendisi ile etkileşmeye girmekte ve 0-spine sahip skaler bir parçacığın kütle kazanmasına sebep olmaktadır. Bu parçacığa da Higgs parçacığı adı verilmiştir.
SM'in varlığını öngörduğu Higgs bozonunun 14 Mart CERN Bilimsel Araştırma Merkezi'nin yaptığı açıklama ile kesin olarak bulunduğu bildirildi.[2]
Nötrino kütlesi
SNO ve SuperKamiokande deneyleri daha önce sanılanın aksine, yüksüz leptonların () çok da küçük olmasına rağmen bir kütleye sahip olduklarını keşfettiler. SM'de bu durum öngörülmemiş olsa da, basit bir ekleme ile bu problem çözülebilir.
SM'nin eksikleri
SM'nin başarılarının yanı sıra temel bazı eksiklikleri vardır. Bunlar aşağıdaki gibi sıralanabilir;
- Higgs kütlesindeki hiyerarşi sorunu,
- Elektrozayıf ve Güçlü Nükleer Kuvvetleri daha yüksek enerjilerde birleşmemeleri,
- Fermiyon kütleleri ile bunların birbirleri ile olan karışımlarının rastlantısal gibi görünmesi,
- Evren'de gözlenen madde - karşı madde orantısızlığı,
- SM içinde deneyler ile yerleştirilmiş 20 tane sabit vardır, SM bu sabit katsayıların değerlerini öngörememektedir, SM'in öngörüleri için bazı deneylerin sonuçlarına ihtiyaç olması,
- Kütleçekim kuvveti (gravitasyon) için hiçbir şey söylememesi,
- Nötrinoların barındırdığı çok küçük de olsa kütle hakkında bir açıklama yapamaması ve nötrino osilasyonu hakkında bir şey söylememesi
- Kuarkların teoriye dışarıdan ithal edilmesi.
SM ötesi modeller
SM'in bahsi geçen sorunlarını çözmek için yuksek enerjilerde geçerli olacak ve düşük enerji değerlerinde SM'ye dönüşen yeni modeller ortaya atılmıştır. Bunlardan birkaçı aşağıdadır;
- Süpersimetri
- BBTler (Büyük birleşim teorileri)
- Ek boyutlar
- Küçük Higgs modelleri
- Teknirenk
Kaynakça
- ↑ İngilizce Vikipedi'de bulunan 14 Ağustos 2013 tarihli 1964 PRL symmetry breaking papers maddesi.
- ↑ "New results indicate that new particle is a Higgs boson" (İngilizce). web.cern.ch. 14.03.2013. 20 Ekim 2015 tarihinde kaynağından arşivlendi. http://web.archive.org/web/20151020000722/http://home.web.cern.ch/about/updates/2013/03/new-results-indicate-new-particle-higgs-boson. Erişim tarihi: 13 Ağustos 2013.