Kategori teorisi

Kategori teorisi ya da Ulam kuramı, matematik yapılar ve bunlar arasındaki ilişkilerle soyut olarak ilgilenen bir matematik kuram. Yarı mizahi "soyut anlamsızlık" olarak da bilinir.

Tarihi

Bir kategori birbirileriyle ilişkili matematiksel nesneler sınıfının (örneğin grupların) özünü yakalamaya çalışır. Geleneksel olarak yapıldığı gibi tekil nesneler (gruplar) üzerine yoğunlaşmak yerine, bu nesneler arasındaki yapı muhafaza edici gönderimler (yani morfizimler) üzerine yoğunlaşır. Gruplar örneğinde bu gönderimler grup homomorfizmleridir. Bu şekilde farklı kategorileri funktorlar aracılığıyla ilişkilendirmek mümkündür. Funktorlar, bir kategorinin her nesnesini diğer kategorinin bir nesnesiyle ve bir kategorideki morfizmi diğerindeki bir morfizme ilişkilendiren fonksiyonların bir genelleştirmesidir. Sıkça topolojik uzayın temel grubu gibi "doğal yapılar" funktorlar şeklinde ifade edilebilir. Bunun ötesinde, bu tip yapılar "doğal bir bağıntıya" sahiptir ve bir funktoru diğerine ilişkilendirme yolu olan doğal transformasyon konseptine olanak tanır.

Kategoriler, funktorlar ve doğal transformasyonlar Samuel Eilenberg ve Saunders MacLane tarafından 1945 yılında ortaya atılmıştır. Başlangıçta bu nosyonlar, topolojide, özellikle cebirsel topolojide, geometrik ve sezgisel bir kavram olan homolojiden aksiyomatik bir yaklaşım olan homoloji teorisine geçişte önemli bir bölümdür. Başkalarının yanı sıra Ulam tarafından (ya da kendisine atfen), benzer düşüncelerin 1930'ların sonunda Polonya okulunda ortaya çıktığı iddia edilmiştir.

Eilenberg/MacLane, kendi ifadelerine göre, bu kuramı geliştirirken doğal transformasyonları anlama çabasındaydılar. Bunu yapabilmek için funktorlar tanımlamak, funktorları tanımlamak için ise kategoriler tanımlamak gerekiyordu.

Günümüzde bu kuram, matematiğin tüm alanlarında uygulanmaktadır.

Kategoriler, nesneler, ve morfizmler

Kategoriler

Bir kategori C aşağıdaki üç matematiksel durumu oluşturur:

aksiyomlardan,buna burada her nesne için tam bir özdeş morfizm sağlanabilir. Bazı yazarlar sadece kendi özdeş morfizmalarını tanımlayarak verilen tanımından sapabilir.

Morfizmler

morfizmler boyunca ilişkiler (fg = h gibi) değişmeli diyagramlar , ile "noktalar" (köşeler) gösterimsel nesneler ve "oklar" gösterimsel biçimler sık sık kullanılarak gösterilmiştir.

Morfizmler için aşağıdaki özelliklerin herhangisi olabilir. Bir morfizm f : ab bir:

Her çekilme bir epimorfizmdir, ve her kesit bir monomorfizmdir.Dahası, aşağıdaki üç durumun eşdeğeridir:

Kaynakça

Dış bağlantı

Kaynakça

  1. Some authors compose in the opposite order, writing fg yazılır veya gf için fg.Kategori teorisi kullanılarak bilgisayar bilimcileri çok sık yazmak f ; g gf için
  2. Note that a morphism that is both epic and monic is not necessarily an isomorphism! An elementary counterexample: in the category consisting of two objects A ve B, özdeş biçimler, ve from A dan Bye bir tek morfizm f, f is both epic and monic but is not bir isomorphism.
This article is issued from Vikipedi - version of the 2/6/2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.