Dördey

Matematikte, dördeyler (ya da kvaterniyon, kuaternion, dördübir), karmaşık sayılar cisminin değişmesiz genişletmesidir. İlk defa İrlanda'lı matematikçi Sir William Rowan Hamilton tarafından 1843 yılında tanımlanmış, ve 3 boyutlu uzaydaki matematiğe uygulanmışlardır. İlk başta, kuaterniyonlar değişme kuralına (ab = ba) uymadıkları için sorunlu kabul edilmişlerdir. Her ne kadar pek çok uygulamada vektörler ve matrisler yerlerini almış olsa da, hala kuramsal ve uygulamalı matematikte kullanılmaktadırlar. Başlıca kullanım alanları, 3 boyutlu uzayda dönme hareketinin hesaplanmasıdır.

Dördey cebiri genellikle H (Hamilton) ile gösterilir. Clifford cebiri sınıflandırması C0,2(R) = C03,0(R) olarak da gösterilirler. H cebirinin analizde önemli bir yeri vardır. Çünkü, Frobenius teoremi'ne göre, gerçel sayılar cismini althalka olarak içeren sonlu-boyutlu dört bölüm cebirinden bir tanesidir (diğerleri gerçel sayılar, karmaşık sayılar ve sekizeyler (octonions)).

Tanım

Dördeyler bir halka olarak tanımlanır. Kümesi:

.

olarak verilir. Burada kullanılan toplama şu şekilde tanımlıdır:

Çarpma ise

ifadesinin dağıtma kuralı kullanılarak açılmasıyla ve aşağıdaki bağıntılar yardımıyla tanımlanır.

Her dördey tektir ve temel dördeylerin, yani 1, i, j ve k nin gerçel doğrusal birleşimidir.

Dördeyler halkası, çarpma işleminin değişmeli olmaması yüzünden bir cisim değildir. Bir bölüm halkasıdır.

Aynı zamanda, dördeyler, gerçel sayılar üzerinde bir bölüm cebiri oluşturur. Gerçel sayılar ve karmaşık sayılarla birlikte, gerçelleri içeren birleşmeli üç bölüm cebirinden biridir.

Taban ögelerinin çarpımı

denklikler

,

burada i, j, ve k H nın taban ögeleridir,i, j, ve k nın tüm olası çarpanlarını belirtir .

örneğin −1 = ijk nın sağ çarpanlarının her ikisi de k ile verilir

Diğer tüm olası çarpanlar benzer yöntemlerle belirlenebilir

olan satır çarpanı sol faktörü teşkil eder ve bir tablo olarak ifade edilebilir,bu yazının üstünde gösterildiği gibi kendilerinin sütunlari sağ faktörü teşkil eder.

Hamilton çarpımı

iki a1 + b1i + c1j + d1k elementler için ve a2 + b2i + c2j + d2k, burada çarpıma, Hamilton çarpımı (a1 + b1i + c1j + d1k) (a2 + b2i + c2j + d2k) denir, taban ögeler ve dağılımsal kanunun çarpımları ile tanımlanıyor.Dağılım kanunu onu çarpımın açılımı için olası yapar böylece bu taban ögelerin çarpımlarının bir toplamıdır. Bu aşağıdaki bağıntılarla veriliyor:

Şimdi taban elemanları kullanılarak elde etmek için yukarıda verilen kuralları çoğaltılabilir:[1]

Sıralı liste formu

Hnın 1, i, j, k tabanları kullanılıyor dört katının bir kümesi olarak H yazmak için mümkün kılar:

ise taban ögeleri:

ve toplam ve çarpım için formüller:

Dördey değişkenlerinin bir fonksiyonu

bir karmaşık analizin fonksiyonları gibi, bir dördey değişkenin fonksiyonları kullanışlı fizik modelleri önerir.Örneğin, Maxwell tarafından tanıtılan orijinal elektrik ve manyetik alanlar bir dördey değişkenin fonksiyonları idi.

Üstel, logaritma, ve kuvvet

bir dördey veriliyor,

q = a + bi + cj + dk = a + v,

üstel

olarak hesaplanıyor ve

.[2]

bir dördeyin kutupsal çözülümünü aşağıdaki gibi yazabiliriz

burada açı θ ve birim vektör ile tanımlanıyor:

ve

Herhangi birim dördey .olan kutupsal biçim içinde ifade edilebilir

bir keyfi (gerçek) üstel için bir yükselen dördeyin kuvveti ile veriliyor:

Ayrıca bakınız

  • 3-küre
  • Birleşmeli cebir
  • Bikuaterniyon
  • Clifford cebiri
  • Karmaşık sayı
  • Kuaterniyonlar ve Euler açıları arasındaki dönüşüm
  • Bölme cebiri
  • Dual Dördey
  • Euler açıları
  • Dış cebir
  • Geometrik cebir
  • Hurwitz Dördey
  • Hurwitz Dördey düzeni
  • Hiperbolik Dördey
  • hiperkarmaşık sayı
  • Lénárt küresi
  • Oktonyon
  • Pauli matrisleri
  • Kuaterniyon grubu
  • Kuaterniyon değişkeni
  • Kuaterniyonik matris
  • Kuaterniyonlar ve mekansal dönme
  • Dönme operatörü (vektör uzayı)
  • 4-boyutlu Öklid uzayında dönmeler
  • Slerp
  • Bölünmüş-Dördey
  • Teserakt

Notlar

  1. Hazewinkel (2004), ss. 12.
  2. Lce.hut.fi

Dış makaleler ve kaynaklar

Kitaplar ve yayınlar

Bağlantılar ve uzman yazıları

Şablon:Number Systems

This article is issued from Vikipedi - version of the 1/9/2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.