Doğrusal dönüşüm

Doğrusal dönüşüm, bir fonksiyon çeşididir. T, M boyutlu bir vektörden N boyuta bir doğrusal dönüşüm ise, o zaman;

ve herhangi bir sayı olan c için:

Eğer bu koşullar T için doğruysa, o zaman T ,doğrusal bir dönüşümdür. Her doğrusal dönüşüm, olarak ifade edilebilir. Burada A, bir matris'i temsil etmektedir.

Tanımı ve ilk sonuçları

Diyelimki V ve W vektör uzayı aynı K alanı üzerinde olsun. Bir fonksiyonf: VW idi.Herhangi iki vektör x ve y in V ve herhangi skaler α ve K bir lineer haritalama' ise , aşağıdaki iki koşul tatmin edici:

toplanabilirlik
açı 1'in homojenitesi

Bu vektörlerin herhangi bir doğrusal kombinasyonunun için de aynı gereken eşdeğerdir,x1, ..., xmV ve skalerler a1, ..., amK, aşağıdaki eşitlik tutar:

α = 0 açı 1'in homojenitesi için denklem 0V ve 0W sıralanarak Vektör uzaylarının sıfır unsurlar ifade edenV ve W , bunlar aşağıdadır. f(0V) = 0W sağlıyor,

Bazen,V ve W farklı alanlar üzerinde vektör uzayları olarak kabul edilebilir.bu temel alanların tanımında kullanılmakta "doğrusal" olduğunu daha sonra belirtmek gerekir.Biz K-lineer haritalaması hakkında konuşuyoruz,eğer V ve W alanın üzerine uzay olarak kabul edilenK yukarıdaki gibi ise,Örnek için,karmaşık sayıların eşlenik bir R-lineer haritalamadır CC, amaC-lineer değildir.

lineer harita V den Kya (bir vektör uzayı kendi üzerinde K ile gösterilen ) bir doğrusal fonksiyonal olarak adlandırılır.

Bu tabloların genellemesi herhangi bir halka üzerindeR değişiklik olmadan sol-modül RMdir .

matrislerin lineer dönüşümüne örnekler

R2 iki-boyutlu uzay 2 × 2 gerçek matris. doğrusal haritalar açıklanmıştır.Burada bazı örnekler:

Ayrıca bakınız

Vikikitapta bu konu hakkında daha fazla bilgi var:
Linear Algebra/Linear Transformations
This article is issued from Vikipedi - version of the 1/6/2017. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.