Kütle çekimi

Kütleçekimi ya da çekim kuvveti, kütleli her şeyin gezegenler, yıldızlar ve galaksiler de dahil olmak üzere birbirine doğru (ya da birbirine doğru çekildiği) hareket ettiği doğal bir fenomendir.  Enerji ve kütle eşdeğer olduğu için ışık da dahil olmak üzere her türlü enerji yer çekimine neden olur ve onun etkisi altındadır.

Dünya'da, kütleçekimi, fiziksel nesnelere ağırlık verir ve okyanus gelgitlerine neden olur. Evrendeki orijinal gaz halindeki maddenin çekimi, orijinal gaza benzer maddeyi bir araya getirerek yıldızlar oluşturmaya ve yıldızların galaksilere birleştirilmesine, dolayısıyla kütleçekiminin Evrendeki büyük ölçekli yapıların çoğundan sorumlu olmasına neden olmuştur.

Kütleçekimi, sonsuz bir aralıkta bulunurken, uzaktaki nesneler üzerindeki etkileri gittikçe daha zayıf hale gelmektedir. Kütleçekimi, kütleçekimini bir kuvvet olarak değil, kütlenin / enerjinin düzensiz dağılımının yol açtığı uzay-zaman eğriliğinin bir sonucu olarak tanımlayan genel görelilik teorisi (1915'de Albert Einstein tarafından önerildi) tarafından açıklanmaktadır.

Uzay zamanının bu eğriliğinin en uç örneği, hiçbir şeyin, ışığın bile[1], ufkuna girdikten sonra kara delikten kaçamamasıdır. Daha fazla kütleçekimi çekim kuvveti zaman dilatasyonuyla sonuçlanır, burada zaman daha yavaş (daha güçlü) bir kütleçekimi potansiyeline daha yavaş geçer. Bununla birlikte, çoğu uygulama için, kütleçekimi, kütleçekiminin neden olduğu varsayılan Newton'un evrensel çekim yasasıyla anlatılır.

İki cisim kütlesinin çekim kuvvetinin kitlelerinin çarpımı ile doğru orantılı olduğu ve aralarındaki mesafenin karesi ile ters orantılı olduğu matematiksel bir ilişkiye göre birbirlerine doğrudan çekilen (veya çekilen) bir kuvvet. Kütleçekimi, doğanın dört temel etkileşiminin en zayıf yönüdür. Kütleçekimi kuvveti,  güçlü kuvvetten yaklaşık 1038 kat daha zayıf, elektromanyetik kuvvetten 1036 kat daha zayıf ve zayıf kuvvetten 1029 kat daha zayıftır.

Sonuç olarak, kütleçekimi, atom altı parçacıkların davranışı üzerinde önemsiz bir etkiye sahiptir ve günlük maddenin iç özelliklerini belirleme konusunda rol oynamaz (ancak kuantum çekim kuvvetine bakınız). Öte yandan, kütleçekimi, makroskopik ölçekte egemen etkileşimdir ve astronomik cisimlerin oluşum şekli ve yörüngesinin (yörünge) sebebidir.

Kütle çekimi dünya ve evren boyunca gözlemlenen çeşitli olaylardan sorumludur. Örneğin, Dünya ve diğer gezegenlerin Güneş'in yörüngesinde, Ay'ın Dünyanın Yörüngesinde olmasına gelgitlerin oluşumuna, Güneş Sistemi'nin oluşumuna ve evrimine, yıldızlara ve galaksilere neden olur. Planck döneminde (Evrenin doğumundan 10-43 saniye sonrasına kadar) geliştirilen, muhtemelen kuantum yer çekimi, süper gravite veya kütleçekimi tekilliği biçimindeki evrende kütleçekiminin en eski örneği, muhtemelen bir sahte vakum, kuantum vakumu veya sanal parçacık gibi ilkel bir durumdan bilinmeyen bir biçimde meydana gelmiştir.[2] Bu nedenle, kısmen her şeyin teorisinin araştırılması, genel görelilik teorisinin ve kuantum mekaniğinin (veya kuantum alan teorisinin) kuantum kütleçekimine birleştirilmesi bir araştırma alanı haline gelmiştir.

Kütleçekimi teorisinin tarihçesi

Kütleçekiminin Önceki Kavramları

Modern Avrupalı ​​düşünürler haklı olarak kütleçekimi teorisinin geliştirilmesi ile bağlantı kuruyorsa da, kütleçekimi kuvvetini belirleyen önceden var olan fikirler vardı. İlk açıklamalardan bazıları, Dünya döndüğünde nesnelerin neden düşmediğini açıklamak için yer çekim kuvvetini belirleyen Aryabhata gibi erken matematikçi astronomlardan geldi.[3]

Daha sonra, Brahmagupta'nın eserleri bu kuvvetin varlığına değinmişti.

Bilimsel Devrim

Kütleçekimi kuramıyla ilgili modern çalışmalar, Galileo Galilei'nin 16. yüzyılın sonu ve 17. yüzyıl başlarındaki çalışmaları ile başladı. Galileo, Pisa Kulesi'nden topları atan meşhur (muhtemelen apokrif[4] deneyinde) eğilimleri düşen eğik top ölçümleri ile, kütleçekimi ivmesinin tüm nesneler için aynı olduğunu gösterdi.

Bu, Aristo'nun daha ağır nesnelerin daha yüksek bir kütleçekimi ivmesi olduğuna olan inancından ciddi bir sapmaydı. Galileo, bir atmosferde daha az kütleye sahip nesnelerin daha yavaş düşebileceği için hava direnci olduğunu öne sürdü. Galileo'nun çalışmaları Newton'un kütleçekimi kuramının[5] formülasyonu için gerekli altyapıyı hazırladı.[6]

Newton'un kütleçekimi teorisi

Sir Isaac Newton, 1642'den 1727'ye kadar yaşayan İngiliz fizikçi. 1687'de İngiliz matematikçisi Sir Isaac Newton Principia'yı yayınladı ve evrensel çekim kuvvetinin ters kare yasasını hipotez haline getirdi. Kendi sözleriyle, "Gezegenleri küreler içinde tutan güçlerin karşılıklı olarak etraflarındaki merkezlerden uzaklıklarının kareleri olması gerektiği ve dolayısıyla ayı Orb'da tutmak için gereken kuvveti karşılaştırdıklarını dile getirdim Yeryüzündeki kütleçekimi kuvveti ile neredeyse tümüyle cevabını buldular. "

Denklem şudur:

F kuvveti olduğunda, m1 ve m2, etkileşen nesnelerin kütleleridir; r, kütle merkezleri arasındaki uzaklıktır; G, kütleçekimi sabitidir.

Newton'un teorisi, diğer gezegenlerin eylemleri tarafından hesaplanamayan Uranüs hareketlerine dayalı Neptün varlığını öngörmek için kullanıldığında en büyük başarısını elde etti. Hem John Couch Adams hem de Urbain Le Verrier tarafından yapılan hesaplar gezegenin genel konumunu ve Le Verrier'in hesaplamaları Johann Gottfried Galle'in Neptün'ü keşfetmesine neden olan hesaplamalardı. Cıva yörüngesindeki bir tutarsızlık, Newton'un teorisindeki kusurları belirtti.

19. yüzyılın sonlarına doğru, yörüngesinin Newton'un teorisine göre açıklanamayan hafif dalgalanmalar gösterdiği biliniyordu, ancak başka rahatsız edici bir cisim (Güneş'i Merkür'den bile daha yakın bir gezegen gibi) aramıştı. Konu, Albert Einstein'ın yeni genel görelilik teorisi tarafından Merkür'ün yörüngedeki küçük tutarsızlıktan sorumlu olan 1915'te çözüldü.

Newton'un teorisi Einstein'ın genel göreliliğiyle değiştirilirken, modern, göreceli olmayan kütleçekimi hesaplamaları, Newton'un teorisini kullanarak yapılmaya devam etmektedir çünkü daha basit bir şekilde çalışılmaktadır ve yeterince küçük kütleler, hızlar ve enerjiler içeren çoğu uygulama için yeterince doğru sonuçlar verir.

Eşdeğerlik (Denklik) ilkesi

Galileo, Loránd Eötvös ve Einstein gibi bir dizi araştırmacı tarafından araştırılan eşdeğerlik ilkesi, tüm nesnelerin aynı şekilde düştüğü ve yer çekiminin etkilerinin ivme ve yavaşlamanın bazı yönlerinden ayırt edilemez olduğunu ortaya koymaktadır. Zayıf eşdeğerlik prensibini test etmenin en basit yolu, farklı kütlelerin veya kompozisyonların iki nesnesini vakumda bırakıp aynı anda zemine çarpıp vurmadıklarını görmektir.

Bu tür deneyler, diğer kuvvetlerin (hava direnci ve elektromanyetik etkiler gibi) önemsiz olduğu durumlarda tüm nesnelerin aynı hızda düştüğünü göstermektedir. Daha sofistike testler Eötvös tarafından icat edilen bir torsiyon dengesini kullanıyor. Uzayda daha doğru deneyler için uydu deneyleri, örneğin STEP, planlanmaktadır.[7]

Eşdeğerlik ilkesinin formülleri şunları içerir:

Genel Görelilik

Bir nesnenin kütlesi tarafından üretilen uzaysal çarpıtmanın iki boyutlu analojisi. Madde uzay zamanının geometrisini değiştirir, bu (kavisli) geometri kütleçekimi olarak yorumlanır. Beyaz çizgiler, uzayın eğriliğini temsil etmez, bunun yerine, düz bir uzay süresinde doğrusal olacak şekilde kavisli uzamsal zamana uygulanan koordinat sistemini temsil eder.

Genel görelilikte, yer çekiminin etkileri, bir kuvvet yerine uzay-zaman eğriliğine atfedilir.

Genel görelilik için başlangıç ​​noktası, serbest düşüşe atalet hareketi eşlik eden eşdeğerlik ilkesidir ve serbest düşen atalet nesneleri yerdeki atıl olmayan gözlemcilere göre hızlandırılmış olarak tanımlar. Bununla birlikte, Newton fiziğinde, nesnelerden en az birisi bir kuvvet tarafından işletilmedikçe böyle bir ivme oluşabilir.

Einstein, uzay zamanının madde tarafından kıvrıldığını ve serbest düşen cisimlerin kavisli uzayda yerel düz yol boyunca ilerlediğini önermişti. Bu düz yollara jeodezik denir. Newton'un hareket ilk yasası gibi, Einstein'ın teorisi, bir cisim üzerine bir kuvvet uygulanıyorsa, bir jeodezikten sapacaktır. Mesela, Dünya'nın mekanik direnci üzerimizde yukarı doğru bir kuvvet uyguladığından ayakta dururken jeodezik çalışmaları izlemiyoruz; bunun sonucu olarak yeryüzünde eylemsiz durumdayız. Bu, uzayda jeodeziklerin birlikte hareket etmenin neden atalet olarak kabul edildiğini açıklar.

Çözümler

Einstein alan denklemlerinin başlıca çözümleri şunlardır:

Testler

Genel göreliliğin testleri şunlardır:

Kütleçekim ve Kuantum Mekaniği

Genel göreliliğin keşfini takip eden on yıllarda, genel göreliliğin kuantum mekaniği ile uyumsuz olduğu görülmüştür. Diğer temel kuvvetlerde olduğu gibi yer çekimini de kuantum alan teorisi çerçevesinde açıklamak mümkündür. Burada, yer çekiminin çekimsel kuvvetinin, tıpkı sanal fotonların değiş tokuş edilmesi yolu ile elektromanyetik kuvvetlerin açığa çıkması gibi, sanal gravitonların alışverişi sırasında ortaya çıktığı düşünülür. Bu açıklama, genel göreliliği klasik limitte ortaya çıkarır. Ancak, bu yaklaşım, Planck mesafesi ölçeğindeki kısa mesafelerde başarısızdır. Bu ölçeğe inildiğinde, kuantum çekiminin daha eksiksiz bir teorisine (veya kuantum mekaniğine daha yeni bir yaklaşıma) ihtiyaç bulunmaktadır.

Detaylar

Dünyanın Kütleçekim

Bütün gezegensi cisimler kendi yer çekimsel alanları ile çevrelenmişlerdir. Bu alanlar, Newton fiziği kullanılarak bakıldığında, bütün cisimler üzerinde çekim gücü uyguluyor olarak tarif edilebilirler. Küresel olarak simetrik bir gezegen varsaydığımızda, bu alanın, gezegensi cismin yüzeyinin üzerindeki herhangi bir noktadaki gücü, cismin kütlesi ile doğru orantılı, cismin merkezine olan uzaklığın karesi ile ters orantılıdır.

Eğer kütlesi Dünya’nın kütlesine benzer büyüklükte olan bir cisim Dünya’ya doğru düşüyor olsa idi, buna denk gelen Dünya’nın ivmelenmesi de gözlemlenebilir büyüklükte olurdu.

Yer çekimsel alanın kuvveti, etkisi altındaki cisimlerin ivmelenmesine sayısal olarak eşittir. Dünya’nın yüzeyi yakınındaki düşen cisimlerin ivmelenme oranları yüksekliğe, dağlar ve tepeler ve belki sıra dışı oranda yüksek veya düşük yüzey altı yoğunluğuna bağlı olarak çok düşük miktarlarda değişkenlik gösterir. Ağırlıklar ve uzunluklar ile ilgili olarak Uluslararası Ağırlıklar ve Uzunluklar Bürosu tarafından standart bir kütleçekimi değeri tanımlanmıştır. Bu değer Uluslararası Birimler Sistemi altında belirtilmektedir.

Başlangıçta durağan olan bir cismin yer çekimi etkisinde serbestçe düşmesine izin veriliyor. Bu cismin kat ettiği mesafe, geçen zamanın karesi ile orantılıdır. Bu resim, yarım saniyelik bir zaman dilimini kapsamaktadır ve saniyede 20 flaş ile çekilmiştir.

Standart kütleçekimi g ile gösterilir ve değeri g = 9.80665 m/s2 (32.1740 ft/s2) ‘dir.

Bu 9.80665 m/s2’lik değer, Uluslararası Ağırlıklar ve Uzunluklar Komitesi tarafından ilk seferinde benimsenmiş olan değerdir. 1901 yılında yapılan ölçüme dayanan bu bilgi, her ne kadar 10 binde beş oranında fazla yüksek olduğu gösterilmiş olsa da, halen standart değer olarak kullanılmaya devam etmektedir.[11] Bu değer meteorolojide kullanılmaya devam edilmiştir ve bazı standart atmosferlerde,  her ne kadar asıl değer 45 derece 32 dakika 33 saniye olsa da, 45 derecelik enlemdeki değer olarak kabul edilmektedir.

Bu, G için standart değeri baz alırsak ve hava direnci ihmal edersek, Dünya’nın yüzeyinde serbest bir biçimde düşen bir nesnenin, düştüğü her saniye için 9.80665 m/s (32.1740 ft/saniye) hızlanacağı anlamına gelmektedir. Böylece, durağan konumdan harekete geçen bir cisim, bir saniye sonunda 9.80665 m/s (32.1740 ft/saniye) hıza ulaşacaktır. Bu hız, ikinci saniye sonunda yaklaşık 19.62 metre/saniye (64.4 ft/s) olacak ve bu şekilde, sonrasında geçen her saniye içim hıza 9.80665 m/s (32.1740 ft/saniye) eklenecektir. Ayrıca, yine hava sürtünmesini ihmal ettiğimizde, aynı yükseklikten bırakıldığı takdirde herhangi ve bütün cisimler yere aynı anda çarpacaklardır.

Newton’un üçüncü kanununa göre, düşen bir cisme uyguladığı kuvvetin aynısını kendisi de aynı büyüklükte fakat tam tersi yönde hissetmektedir. Bu, iki cisim birbirleri ile çarpışıncaya kadar, Dünya’nın da cisme doğru ivmelendiği anlamına gelmektedir. Dünya’nın kütlesi devasa olduğundan, bu tersine yönlü kuvvet ile Dünya üzerinde oluşan ivmelenme, nesnenin yaşadığı ivmelenmenin yanında çok küçüktür. Eğer nesne Dünya ile çarpıştıktan sonra sekmezse, bu sefer her biri diğerine itici bir temas kuvveti uygulayacak ve bu kuvvet çekim kuvvetini dengeleyerek daha fazla herhangi bir hareket olmasını engelleyecektir.

Dünya üzerindeki yer çekimi kuvveti iki kuvvetten kaynaklanır (bu iki kuvvetin vektörel toplamıdır): a) Newton’un evrensel yasaları uyarınca uygulanan yer çekimsel çekim b) merkezkaç kuvveti; bu kuvvet, dünyaya bağlı dönen bir referans noktası almamızdan kaynaklanmaktadır. Yer çekimi kuvveti, ekvatorda en düşük düzeydedir. Bunun iki nedeni vardır: Birincisi, ekvatorun üzerindeki noktalar, Dünya’nın merkezine en uzak noktalardır. İkincisi ise, merkezkaç kuvvetinin en güçlü biçimde hissedildiği yerin Ekvator olmasıdır. Yer çekimi kuvveti enlemin artması ile birlikte ekvator çizgisi üzerindeki 9.780 m/s2’lik değerinden kutuplar üzerindeki 9.832 m/s2’lik değere doğru artar.

Dünya’nın Yüzeyi Yakınında Serbest Düşen Bir Cisme Ait Denklemler

Sabit bir yer çekimsel çekim kuvveti varsayımı altında, Newton’un evrensel çekim kuvveti kanunu, F=mg formülüne indirgenir. Burada m, cismin kütlesi, g ise Dünya üzerindeki ortalama büyüklük değeri 9.81m/s2 olan sabit bir vektördür. Ortaya çıkan kuvvete cismin ağırlığı denir. Kütleçekiminden kaynaklanan ivmelenmeye bu g değerine eşittir. Başlangıçta durağan olan bir cisim, serbest bırakıldığı takdirde, serbest düşüş sırasında geçirdiği zamanın karesi ile orantılı bir biçimde yol alır. Sağda görülen resimde, yarım saniyelik süre zarfında stroboskopik flaş kullanılarak saniyede 20 flaş hızı ile çekilmiştir. Saniyenin ilk 20’de 1’lik kısmında, düşen top bir birim mesafe kat etmektedir (burada, bir birim mesafe yaklaşık 12 milimetredir). İkinci 20’de 1’lik süre sonunda, cisim toplamda 4 birim düşmüş olmakta ve bu hızlanma üçüncü 20’de 1’lik saniyede 9 birim şeklinde devam etmektedir.

Aynı sabit yer çekimi varsayımları altında, h yüksekliğinde duran bir cismin potansiyel enerjisi Ep= mgh (veya Ep=wh, w=ağırlık) ‘tır. Bu gösterim, Dünya’nın yüzeyine olan mesafe olan h’ın yalnızca çok kısa olduğu mesafeler için geçerlidir. Benzer şekilde, ilk hız v ile fırlatılan bir cismin ulaşabileceği en büyük yüksekliğin gösterimi de küçük yükseklikler ve küçük başlangıç hızları için geçerlidir.

Kütleçekimsel Astronomi

Yer çekimi içerisinde bulunduğumuz Samanyolu Galaksisini oluşturan yıldızlara etki eder

Newton’un yer çekimi kanunlarının uygulanması, Güneş Sistemi’ndeki gezegenler, Güneş’in kütlesi, kuvasarların detayları ve hatta karanlık maddenin varlığı hakkında bile bugün sahip olduğumuz detaylı bilginin çoğunun kaynağını oluşturmaktadır. Her ne kadar ne bütün gezegenlere ne de Güneş’e yolculuk etmemiş olsak da, bunların kütlelerini biliyoruz. Bu kütleler, yer çekimi kanunlarının yörüngenin ölçülen karakteristiklerine uygulanması yolu ile elde edilmektedirler. Uzayda bir cisim, ona etki eden kütleçekimi nedeniyle yörüngesini muhafaza eder. Gezegenler, yıldızların yörüngesinde dolanır, yıldızlar ise galaktik merkezlerin çevresinde dolanırlar. Galaksiler, yığınların ortasındaki ağırlık merkezinin çevresinde dolanırlar ve yığınlar da süper yığınların yörüngesindedirler. Bir cisim üzerine diğer bir cisim tarafından etki eden yer çekimi kuvveti, bu cisimlerin kütlelerinin çarpımı ile doğru orantılı ve aralarındaki mesafenin karesi ile ters orantılıdır.

Muhtemelen kuantum çekimi, süper çekim veya yer çekimsel tekillik şeklindeki en erken yer çekimi, uzay ve zaman ile birlikte, Evren’in başlangıcını takip eden 10-43 saniyelik bir süre olan Planck evresinde ortaya çıkmıştır. Daha öncesinde ise Evren’in sahte vakum, kuantum vakumu veya sanal parçacık gibi daha ilkel bir düzeyde olduğu düşünülmekte fakat Planck evresine nasıl geçiş yaptığı bilinmemektedir.[2]

Kütleçekimsel Radyasyon

Genel göreliliğe göre, yer çekimi radyasyonu, uza-zamanın osilasyonu gösterdiği yerlerde ortaya çıkar. Bu, birbirinin çevresinde yörüngeye girmiş cisimlerde görülür. Güneş sistemi tarafında yayılan yer çekimsel radyasyon ölçülemeyecek kadar küçüktür. Ancak, ikili pulsar sistemlerde zaman içerisinde oluşan enerji kaybı olarak yer çekimi radyasyonunun dolaylı gözlemi yapılabilmiştir. PSR B1913+16 bu tip pulsarlara bir örnektir. Nötron yıldızı birleşmelerinde ve kara delik oluşumlarının da tespit edilebilir büyüklükte yer çekimi radyasyonu oluşturabileceği düşünülmektedir. Lazer İnterferometre Kütleçekimsel Dalga Gözlemevi (LIGO) gibi yer çekimsel radyasyon gözlem evleri, bu problem üzerinde çalışmak üzere inşa edilmişlerdir. 2016 yılının Şubat ayında, Gelişmiş LIGO takımı kara deliklerin çarpışmasından doğan yer çekimsel dalgaları keşfettiklerini açıkladılar. 14 Eylül 2015 tarihinde LIGO, dünyadan 1.3 milyar ışık yılı uzaklıktaki iki kara deliğin çarpışmasından doğan yer çekimi dalgalarını ilk kez kayıt etti. Bu gözlemler, Einstein ve diğerlerinin, bu tip dalgaların var olduğuna ilişkin teorik tahminlerini teyit etmiştir. Olay aynı zamanda ikili kara delik sistemlerinin varlığını da göstermiş ve yer çekiminin doğasının, Büyük Patlama ve sonrası dahil evrendeki olayların anlaşılmasına yönelik olarak pratik gözlemlerin de önünü açmıştır.

Kütleçekimnin Hızı

2012 yılının Aralık ayında, Çin’deki bir araştırma ekibi, dolunay ve yeni ay boyunca oluşan Dünya’nın gelgitleri arasındaki faz gecikmesini bulduğunu açıkladı. Bu sonuçlar, yer çekiminin hızının ışık hızı ile aynı olduğunu gösteriyordu. Bunun anlamı şudur; eğer güneş bir anda ortadan kaybolacak olsa, dünya, ışığın bu mesafeyi kat etmesi için gereken süre olan 8 dakika daha normal bir şekilde yörüngesinde kalacaktır. Takımın bulguları Şubat 2013 tarihli Çin Bilim Bülteni’nde yayınlanmıştır.

Anormallikler ve Çelişkiler

Mevcut teori ile açıklanamayan bazı gözlemler de bulunmaktadır. Bu gözlemlerin varlığı, daha iyi kütleçekimi teorilerinin yapılması gerektiğine işaret ediyor olabilir veya bilim insanlarını farklı açıklama yollarına sevk edebilir.

Kaynaklar

  1. "HubbleSite: Black Holes: Gravity's Relentless Pull".
  2. 1 2 Birth Of Universe. Oregon Üniversitesi evrenin ilk zamanlarında "Planck Zamanı" ve "Planck Çağı" tartışması.
  3. *Sen, Amartya (2005). The Argumentative Indian. Allen Lane. p. 29. ISBN 978-0-7139-9687-6
  4. Ball, Phil (June 2005). "Tall Tales". Nature News. doi:10.1038/news050613-10.
  5. Galileo (1638), Two New Sciences, First Day Salviati: "Eğer Aristo'nun anlamı buyduysa, onu bir başka hatayla yükleyeceksiniz; bu da hatalı olur; Çünkü yeryüzünde böyle yüksek bir yükseklik bulunmadığından Aristo'nun deney yapamadığı açıktır; Ancak gördüğümüz kadarıyla konuştuğunda bunu gerçekleştirdiğinin izlenimini bize vermek ister."
  6. Bongaarts, Peter (2014). Quantum Theory: A Mathematical Approach (illustrated ed.). Springer. sf. 11. ISBN 978-3-319-09561-5 11. Sayfa
  7. M.C.W.Sandford (2008). "STEP: Satellite Test of the Equivalence Principle". Rutherford Appleton Laboratory.
  8. Paul S Wesson (2006). Five-dimensional Physics. World Scientific. sf. 82. ISBN 981-256-661-9
  9. Weinberg, Steven (1972). Gravitation and cosmology. John Wiley & Sons. sf. 194.
  10. See W.Pauli, 1958, sf. 219–220
  11. List, R. J. editor, 1968, Acceleration of Gravity, Smithsonian Meteorological Tables, Sixth Ed. Smithsonian Institution, Washington, D.C., sf. 68.
  12. CERN (20 Ocak 2012). "Ekstra boyutlar, yerçekimi ve minik kara delikler".
This article is issued from Vikipedi - version of the 12/29/2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.