Tek ve çift fonksiyonlar

Matematikte, tek fonksiyon ve çift fonksiyon, aralarında simetri ilişki bulunan ve toplamaya göre tersleri olan fonksiyonlardır. Matematiksel analizin birçok alanında, özellikle kuvvet serisi ve Fourier serisinde sıkça kullanılır. Kuvvet fonksiyonunun kuvvetlerine göre adlandırılır ve şu şartı şağlar: Eğer n çift tam sayı ise, f(x) = xn, çift fonksiyon; n tek tam sayı ise, fonksiyon tek fonksiyondur.

Tanım ve örnekler

Matematikte çiftlik ve teklik kavramları yalnızca, tanım ve değer kümelerinin her ikisinin de toplamaya göre tersleri olan fonksiyonlar için tanımlanır. Buna, abelian grup, tüm halkalar, tüm alanlar ve tüm vektör uzayları dahildir. Örneğin; bir reel değişkenin reel değerli fonksiyonu ve bir vektör değişkeninin karmaşık değerli fonksiyonu çift veya tek olabilir.

Çift fonksiyon

ƒ(x) = x2, bir çift fonksiyondur.

f(x), bir reel değişkenin reel değerli fonksiyonu olsun. Eğer aşağıdaki eşitlik, f tanım kümesindeki tüm x ve -x ler için sağlanıyorsa f, çifttir :

Geometriksel olarak ifade etmek gerekirse, bir çift fonksiyonun grafiği, y eksenine göre simetriktir. Yani y eksenine göre yansıtıldıktan sonra bile grafiği değişmez.

Çift fonksiyonlara örnek, |x|, x2, x4, cos(x) ve cosh(x).

Tek fonksiyon

ƒ(x) = x3, bir tek fonksiyondur.

f(x), bir reel değişkenin reel değerli fonksiyonu olsun. Eğer aşağıdaki eşitlik, f tanım kümesindeki tüm x ve -x ler için sağlanıyorsa f, tektir :

veya

Geometriksel olarak ifade etmek gerekirse, bir tek fonksiyonun grafiği, orijine göre simetriktir Yani orijine göre 180 derece döndürüldükten sonra bile grafiği değişmez.

Tek fonksiyonlara örnek; x, x3, sin(x), sinh(x), ve erf(x).

Bazı durumları

Tek veya çift fonksiyon, sürekli olsa bile diferansiyellenebilir anlamına gelmez. Örneğin her yerde ayrık fonksiyon çifttir. Fakat hiçbir yerde sürekli değildir. Çiftlik durumu her iki alandada farklı incelenir.

Temel özellikler

Tek ve çift fonksiyonların toplamı

, tüm reel sayılarda tanımlı herhangi bir fonksiyon olsun. Bunu, şöyle de sembolize edebiliriz:

.

Tekrar şöyle yazılabilir: .

, ve , olsun.

Burada, şu eşitlik elde edilir: .

Şimdi, , çifttir. .

, tektir. . Q.E.D.

Seriler

Cebirsel yapı

burada
çifttir ve
tektir. Örneğin; eğer f üstel ise, fe, cosh vefo  sinh olur.

Ayrıca bakınız

This article is issued from Vikipedi - version of the 1/7/2017. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.